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Abstract. The microstructure characterization by X-ray line profile analysis is possible for determination of 

dislocation density, micro-strain within grains due to dislocation and average coherent domain size (sub-

grain) within the grain. This study presents the X-ray diffraction peaks shape analysis and their broadening 

with different thermal treatments in Zr–2⋅5% Nb pressure tube material. The peak shape is analysed using 

Fourier transformation and information about coherent domain size, micro-strain and dislocation density 

could be obtained from the Fourier coefficients of the peak. Analysis of broadening of the peaks by integral 

breadth method also gives the coherent domain size, dislocation density and micro-strain present in the mate-

rial. The results from the X-ray techniques are comparable to those obtained from direct observation of 

transmission electron microscopy. The measured yield strength increases with dislocation density. An empiri-

cal relationship is obtained for the yield strength from the dislocation density of the material. The measured 

strength is in agreement with the one calculated from dislocation density. 
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1. Introduction 

1.1 Microstructure analysis using X-ray diffraction line 

profile analysis 

The diffraction pattern obtained from a metallic sample 
gives information about imperfections in the material i.e. 
dislocations, small crystallite (domain) size, microstrains 
within the grains due to dislocations and stacking faults. 
The X-ray diffraction (XRD) peak is broadened due to 
small crystallite size and strain due to dislocations and 
stacking faults. The analysis of the shape of the peaks for 
obtaining information about the material is referred to as 
line profile analysis (LPA). 
 Dislocation density (ρ) is an important material pro-
perty, which gives the length of the dislocations present 
per unit volume (m/m3) in the material. It has a strong 
influence on out-of-pile and in-pile properties of critical 
clad and structural materials for pressurized heavy water 
nuclear reactors. X-ray line broadening technique has 
been used widely to estimate the dislocation density. But 
use of this technique requires careful experimentation, 
sample preparation and calculations.  

 The line profiles of the reflections of various planes 
during X-ray diffraction are characteristic of the state of 
the material. The shapes of line profiles are also affected 
by instrument and sample shape, which is referred to as 
instrumental broadening. This instrumental broadening 
needs to be eliminated to obtain broadening exclusively 
due to metallurgical effects. Once such data is obtained, 
estimation of coherent domain size, micro strains within 
these domains, density of dislocation, stacking fault 
probability etc can be done. Coherent domain size (D) is 
the size of coherently diffracting region within a grain, 
representing fault free region between dislocations (of 
the order of 100–1000 Å), higher the ρ lower the D. 
Within this region, due to dislocations, micro strain (ε) is 
present between the atomic planes (of the order of 10–3). 
The observed broadening in X-ray line profiles is due to 
the D and ε present in the material. Once the D and ε are 
determined from the broadening, the dislocation density 
can be estimated. 
 There are two basic techniques of X-ray line profile 
analysis: (i) Fourier space technique under which Fourier 
analysis (Warren 1968) also forms a part, and (ii) real space 
techniques like (a) integral breadth (Wagner and Aqua 
1964), (b) variance analysis (Wilson 1962) and (c) peak-
fitting methods (Keijser et al 1982). It has been shown 
that each of the above techniques leads to similar results 
for domain size, dislocation density etc. 

 
*Author for correspondence 



K  Kapoor  et  al 

 

60

 Peak fitting methods are based on the analysis of the 
full width of the line profile at half of the maximum inten-
sity and the integral breadth that can be easily determined 
from the peak profile. It is well established that profile 
arising due to size broadening are approximately Cauchy 
and due to lattice strain broadening is nearly Gaussian in 
nature. By fitting the diffraction peak profile with Voigt/ 
pseudo-Voigt function the Cauchy and Gauss contri-
butions (βC and βG, respectively) could be determined. 
Alternatively, βC and βG of a peak are determined from 
the value of integral breadth and full width half maxima 
of the peak using well established relationships (Keijser 
et al 1982). Coherent domain size and lattice strain are 
calculated from βC and βG of a peak. 
 In the present study, one Fourier space method (Fou-
rier analysis) and one real space method (integral breadth 
method), has been used for analysis of results to get a 
comparative view of two basic techniques. In the integral 
breadth method the peaks that are affected by stacking 
fault are also included to give overall dislocation density 
including the stacking fault concentration. On the other 
hand, Fourier analysis gives separate estimation of stacking 
fault concentration in addition to ρ, D and ε. The correc-
tion for instrumental broadening is most important step in 
the estimation of material properties from line profile 
analysis. The results from the two techniques have been 
compared with each other with different sample condi-
tions. The direct observation transmission electron mi-
croscopy (TEM) techniques which are also used for these 
measurements are extremely time consuming and expen-
sive. The results of the X-rays are in good agreement 
with the TEM. 

1.2 Material 

The present study is carried out on Zr–2⋅5wt% Nb (here-
after called Zr–2⋅5 Nb) pressure tube material for pres-
surized heavy water reactor (PHWR). Zirconium base 
alloys are used in nuclear reactors for their low neutron 
absorption cross-section, good elevated temperature me-
chanical strength, low irradiation creep and high corro-
sion resistance in reactor atmosphere. Zr–2⋅5 Nb, 
currently used for pressure tubes, has replaced Zircaloy-2 
due to its better physical and mechanical properties lead-
ing to increased life in the reactor. The chemical compo-
sition of the alloy is given in table 1. 
 Zr–2⋅5 Nb is a two-phase material with major α (HCP) 
phase with fine network of β phase at grain-boundaries. 
The α phase is elongated lamellar shaped having aspect 
ratio of 1 : 5 : 10 (thickness : width : length). Due to cold 
work, dislocations network is formed in α phase. Initially 
the β phase forms a network around α phase and with 
thermo-mechanical processing the β network is broken. 
The TEM micrograph of the material in cold worked and 
stress relieved condition is presented in figure 1. The 

material for the study was taken in cold worked condition 
and was given heat treatments to modify the dislocation 
network in the α phase. 
 The study has been carried out on the material in four 
different thermomechanical conditions (table 2). The dislo-
cation density measurements were done to the samples 
with following conditions. The measured dislocation den-
sity was correlated to yield strength (YS) measured by 
tensile testing at 573 K for the material in those condi-
tions. This temperature was selected as the operation tem-
perature for this component in the reactor at 573 K. 

2. Experimental 

For diffraction profile data generation, Rigaku Dmax 2000 
X-ray diffractometer fitted with a horizontal goniometer 
was used. 
 
 

Table 1. Chemical specification of the 
studied material. 

Element Composition 
 

Niobium (%) 2⋅4–2⋅8 
Oxygen (ppm) 900–1300 
Iron (ppm) 650 max 
Chromium (ppm) 200 max 
Tin (ppm) 100 max 
Copper (ppm) 30 max 
Nitrogen (ppm) 65 max 
Hydrogen (ppm) 5 max 
Chlorine (ppm) 0⋅5 max 
Phosphorous (ppm) 10 max 
Zirconium Balance 

 
 

 

Figure 1. TEM micrograph for the Zr–2⋅5 Nb pressure tube 
material in cold worked and stress relieved condition showing 
the high dislocation network within α grains and β phase at the 
grain boundary. 
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 For sample preparation, two specimens with dimen-
sions 12 mm (width) × 25 mm (length), were taken from 
a pressure tube. The length direction was parallel to the 
tube rolling direction and the tube normal (thickness) 
direction was parallel to the sample surface normal. To 
prepare the specimen for reflection geometry, the outer 
surface of the tube was ground flat, polished mechani-
cally and etched. The sample was irradiated with X-rays 
falling on this surface. The sample was stationary (no 
sample spinning) and all the samples were positioned 
identically for X-ray diffraction measurement, as the pro-
file is sensitive to these parameters. The raw data were 
processed for smoothening, background elimination etc. 
The instrument settings used for obtaining peak data are 
given in table 3. 
 Thin foils for TEM were prepared by electropolishing 
using double-jet thinning in a solution of 6% sulphuric 
acid in methanol maintained at 223 K. Thin foils were 
examined in Philips PEM 430T (Philips FEI Electron 
Optics, Eindhoven, Netherlands) TEM operating at 300 kV. 
 Mechanical tests were carried out at elevated tempera-
ture as per ASTM E21 in ZWICK Universal Testing Ma-
chine with high temperature testing attachments (model no: 
1476). The testing was carried out at 573 K. 

3. Theory of analysis and results 

The raw data obtained for the six peaks of each of the 
samples is given in table 4. 
 
 
 
Table 2. Different thermomechanical conditions of the mate-
rial under study. 

Sample  
no. Sample condition 
 

1 As pilgered 
2 Pilgered + stress relieved (400°C, 24 h),  
   4 different samples, 2a to d, were evaluated for 
   integral breadth calculation 
3 Pilgered + SR (400°C, 24 h) + annealed  
   (450°C, 3 h) 
4 Pilgered + SR (400°C, 24 h) + annealed  
  (500°C, 3 h) 

 

 
Table 3. Settings used for obtaining peak data. 

Radiation CuKα 
Scan rate 0⋅1° per min. 
Step size 0⋅002° 
Kα/Kβ separation Using curved crystal monochromator  
   placed at the receiving end 
Background correction Averaging at the end. 
Kα2 separation  Using software with α1/α2 ratio as 0⋅5 
Sample rotation No (Stationary) 

3.1 Fourier analysis 

In the Fourier analysis the line breadth is corrected for 
instrumental broadening using Stoke’s (1948) correction. 
According to the Stokes correction method, the observed 
intensity across a line is related to the distribution due to 
instrumental broadening as well as small particle size by 
the equation 
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 (x) represents the peak with broadening due to 
particle size only and without any effect of instrumental 
broadening, g(x) is from the specimen giving negligible 
broadening in itself and the total broadening is instru-
mental only, h(x) the observed peak containing both in-
strumental and material effect. Knowing h(x) and g(x), 
the f (x) and Fourier coefficients of f (x) can be calculated 
by Fourier analysis. The real and imaginary Fourier coef-
ficients of g(x) are calculated using the following equa-
tions 
 

  ∫
−

=
2/

2/

r d)/2cos()(
1

)(
a

a

xaxtxg
a

tG π , (2) 

 

  ,d)/2sin()(
1

)(
2/

2/

i xaxtxg
a

tG

a

a

∫
−

= π  (3) 

 
where a is the total number of data points. 
 Similar equations are used for calculation of Hr(t) and 
Hi(t) also. Once these are known, the fourier coefficient 
for f (x) is also determined as follows 
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Now, f (x) can be calculated from Fr(t) and Fi(t) as 
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For calculation of the Fourier coefficients from the peak 
data and also the inverse transformation of the Fourier 
coefficients to peak function, the cubic spline method for 
numerical integration has been used (Einarsson 1972). 
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Table 4. X-ray peak data. 

 H K L  Peak top Gravity (P) Max. int Integ. int FWHM Integ. (W) 
 

Sample no. 1 (cold pilgered) 
1 00⋅2 34⋅54 34⋅53 1217 496⋅45 0⋅355 0⋅408 
2 11⋅0 56⋅53 56⋅52 2092 1152⋅33 0⋅482 0⋅551 
3 10⋅3 63⋅32 63⋅35 280 182⋅73 0⋅569 0⋅652 
4 11⋅2 68⋅18 68⋅20 1817 1033⋅27 0⋅506 0⋅569 
5 21⋅1 95⋅52 95⋅54 89 87⋅19 0⋅883 0⋅982 
6 11⋅4 99⋅75 99⋅78 303 266⋅88 0⋅838 0⋅882 

Sample no. 2a (Heat treated at 400°C) 
1 00⋅2 34⋅11 34⋅07 719 189⋅15 0⋅220 0⋅263 
2 11⋅0 56⋅26 56⋅25 1302 166⋅45 0⋅296 0⋅358 
3 10⋅3 62⋅90 62⋅91 171 54⋅82 0⋅286 0⋅350 
4 11⋅2 67⋅86 67⋅87 1359 478⋅10 0⋅327 0⋅434 
5 21⋅1 95⋅51 95⋅57 106 60⋅27 0⋅425 0⋅570 
6 11⋅4 99⋅37 99⋅35 320 99⋅80 0⋅307 0⋅591 

Sample no. 2b (Heat treated at 400°C) 
1 00⋅2 34⋅18 34⋅13 808 213⋅08 0⋅212 0⋅264 
2 11⋅0 56⋅32 56⋅31 1567 536⋅86 0⋅279 0⋅343 
3 10⋅3 62⋅95 62⋅92 249 93⋅62 0⋅300 0⋅377 
4 11⋅2 67⋅92 67⋅90 1707 716⋅83 0⋅327 0⋅420 
5 21⋅1 95⋅56 95⋅59 143 86⋅86 0⋅431 0⋅609 
6 11⋅4 99⋅40 99⋅40 527 314⋅62 0⋅480 0⋅597 

Sample no. 2c (Heat treated at 400°C) 
1 00⋅2 34⋅23 34⋅18 1152 307⋅76 0⋅217 0⋅267 
2 11⋅0 56⋅38 56⋅38 1680 540⋅04 0⋅255 0⋅322 
3 10⋅3 63⋅02 62⋅98 367 136⋅85 0⋅286 0⋅373 
4 11⋅2 67⋅99 67⋅97 1819 738⋅77 0⋅318 0⋅406 
5 21⋅1 95⋅62 95⋅62 234 126⋅58 0⋅452 0⋅540 
6 11⋅4 99⋅47 99⋅46 580 348⋅72 0⋅483 0⋅601 

Sample no. 2d (Heat treated at 400°C) 
1 00⋅2 34⋅10 34⋅04 653 193⋅79 0⋅247 0⋅297 
2 11⋅0 56⋅26 56⋅25 1001 351⋅38 0⋅289 0⋅351 
3 10⋅3 62⋅86 62⋅89 215 88⋅14 0⋅315 0⋅410 
4 11⋅2 67⋅87 67⋅86 1241 542⋅64 0⋅339 0⋅437 
5 21⋅1 95⋅52 95⋅54 179 94⋅11 0⋅430 0⋅525 
6 11⋅4 99⋅36 99⋅36 475 283⋅60 0⋅493 0⋅598 

Sample no. 3 (Heat treated at 450°C) 
1 00⋅2 34⋅24 34⋅20 739 172⋅33 0⋅191 0⋅233 
2 11⋅0 56⋅39 56⋅37 2127 644⋅14 0⋅241 0⋅303 
3 10⋅3 63⋅01 62⋅98 464 143⋅65 0⋅242 0⋅309 
4 11⋅2 67⋅99 67⋅98 2252 812⋅86 0⋅278 0⋅361 
5 21⋅1 95⋅63 95⋅66 228 104⋅43 0⋅358 0⋅459 
6 11⋅4 99⋅46 99⋅45 737 358⋅75 0⋅390 0⋅487 

Sample no. 4 (Heat treated at 500°C) 
1 00⋅2 34⋅63 34⋅61 2652 548⋅25 0⋅165 0⋅207 
2 11⋅0 56⋅75 56⋅73 4843 1290⋅66 0⋅213 0⋅267 
3 10⋅3 63⋅36 63⋅36 762 197⋅55 0⋅206 0⋅259 
4 11⋅2 68⋅32 68⋅32 4775 1470⋅86 0⋅242 0⋅308 
5 21⋅1 95⋅89 95⋅89 346 150⋅02 0⋅335 0⋅434 
6 11⋅4 99⋅67 99⋅67 1099 451⋅79 0⋅340 0⋅411 

 

Figure 2 shows the effect of Stokes correction of instru-
mental broadening on the diffraction peak for this material. 
The h(x), g(x) and f

 (x) peaks (11⋅0) are superimposed. 
Kα1 and Kα2 separation is clearly visible in g(x). In the f (x) 
peak, derived after instrumental broadening correction, 

instrumentational broadening as well as the contribution 
from Kα2 has been subtracted and so, the peak becomes 
sharper. It may be observed that the back half of the h(x) 
peak which includes the contribution of Kα2 is modified 
in the f (x) curve while the front half is similar. 
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 The profile of the peak, corrected for instrumental 
broadening using the Stoke’s correction mentioned above, 
can be expressed in terms of Fourier series (Chatterjee 
and Sengupta 1974). By considering each reflection of hexa-
gonal close packed (hcp) structure (HK⋅L0) as a (00l′) 
reflection in terms of orthorhombic axes, the Fourier se-
ries in terms of a position in reciprocal space is expressed 
as 
 
  ),(2cos 3

D
L

S
L2 lhnAAkP ′−′∑′=′ πθ  (7) 

 
where ||2 33 alh ′=′−′ (sinθ – sinθ0)/λ and || 3a′  is a ficti-
tious distance chosen to correspond to the sinθ interval 
within which the peak is expressed as a Fourier series. θ0

 

refers to the peak maxima position and θ the independent 
variable for the peak-curve function. S

LA  and D
LA  represent 

the size and distortion coefficients, respectively and S
LA  

includes the effect of both domain size and faulting. The 
distortion coefficient can be expressed as 
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where || 3anL ′=  which has a significance of a distance 
normal to the reflecting planes, 〉〈 2

Lε  the mean square 
strain and d the interplanar spacing of the reflecting planes. 
 The separation of distortion and size coefficients, D

LA  
and ,D

LA  is done by log plot of S
L

D
LL AAA ⋅=  against 1/d2 

using (8). The intercept yields S
LA

 and the slope gives .D
LA  

Slope of the plots S
LA  vs L gives the domain size normal 

to the reflecting planes (D),  
 
  DLA /1)d/d( 0

S
L =−  for H–K = 3n. (9) 

 
Figure 3 represents the AL vs L plots for three H–K = 3n 
peaks (where H and K are the Miller indices for the plane 
of diffraction and n is an integer number) of cold worked 
stress relieved and annealed (450°C, 3 h) samples after 
instrumental broadening correction. The ln(AL) vs 1/d2 
plots for the same sample with the same three peaks are 
 
 

 

Figure 2. XRD peaks of (11⋅0) plane for pilgered + stress 
relieved + annealed (450°C, 3 h) sample as obtained [h(x)], 
with only instrumental broadening [g(x)] and the derived one 
without instrumental broadening [ f (x)]. 

shown in figure 4 for different L values. The slope of the 
curves gives the value of ),ln( D

LA  from which the micro-
strain, εL, is calculated with respect to L using (8). The inter-
cept of the plots in figure 4 gives ).ln( S

LA  The S
LA  vs L 

curve is shown in figure 5. Coherent domain size, D, is 
determined from the initial slope of this curve using (9). 
 Dislocation density can be calculated from D and εL 
using following formulae 
 
  ρD = 3η/D2   η = 1, (10) 
 
 

 

Figure 3. AL vs L plots for instrumental broadening corrected 
(00⋅2), (11⋅0) and (11⋅2) peaks for the pilgered + stress re-
lieved + annealed (450°C, 3 h) sample. 
 

 

Figure 4. ln(AL) vs 1/d2 plots of H–K = 3N reflections for the 
pilgered + stress relieved + annealed (450°C, 3 h) sample at 
different L values ranging from 0 to 280 Å. 
 

 

Figure 5. S
LA  vs L plots of H–K = 3N reflections for the pil-

gered + stress relieved + annealed (450°C, 3 h) sample. 
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Table 5. Results of the LPA using the Fourier analysis and integral breadth. 

 Coherent domain  Dislocation density 
 size (D in Å) Microstrain (εL) (ρ in 1014 m/m3) 

 

Sample description FA IBA FA IBA FA IBA 
 

As pilgered 251 274 0⋅00245 0⋅0028 26⋅8 24⋅5 
Pilgered + stress relieved 583 503, 559, 0⋅00198 0⋅0017, 0⋅0018, 8⋅8 8⋅11, 7⋅72, 
 (400°C, 24 h)  540, 534  0⋅0016, 0⋅0016  7⋅11, 7⋅19 
Pilgered + SR (400°C, 24 h) + 651 586 0⋅00155 0⋅0012 6⋅11 4⋅91 
 annealed (450°C, 3 h)       
Pilgered + SR (400°C, 24 h) + – 862 – 0⋅0010 – 2⋅78 
 annealed (450°C, 3 h) 

FA, Fourier analysis; IBA, integral breadth analysis. 
 
 

 

Figure 6. Fitting of curve for high intensity peaks of fully 
annealed zircaloy sample. 
 
 

 

Figure 7. (β cosθ/λ)2 vs (sinθ/λ)2 plot for six high intensity 
peaks of cold worked, stress relieved and annealed samples. 
 
 
 

  22
L /2 bkερε =   k = 10, (11) 

 
where b = Burges vector (a) = 1/3 ].0211[  

 Dislocation density (ρ) is obtained from ρD and ρε as 
follows 
 
  ρ = (ρD⋅ρε)

1/2. (12) 
 
The D, εL and ρ values for different thermomechanical 
treatments are reported in table 5. The variation of D, ε 
and ρ after stress relieving and annealing the cold worked 
material is shown in figures 8a–c. 

3.2 Integral breadth analysis 

The correction for instrumental broadening (b) is most 
important step in the estimation of material properties 
from line profile analysis. Integral breadth (b) due to in-
strumental broadening is defined as ratio of the area un-
der the peak (A) and the maximum intensity (I0) when the 
sample is free from the microstructural broadening ef-
fects. The instrumental broadening (b) is a function of 
Bragg’s diffraction angle, θ, (Caglioti et al 1958). 
 

  (b)2 = Utan2θ + Vtanθ + W. (13) 

 
This model does not include the axial divergence at small 
angles. In our case the higher broadening at small angles 
was observed due to this effect. Hence small diffraction 
angles (2θ less than 30°) were excluded from the calcula-
tion. 
 Once the instrumental broadening is determined it has 
to be fitted in the above equation to get degree of fit. 
Various samples were used for calculation of instrumen-
tal broadening as suggested in literature, for example, 
annealed powder zirconium, crystal bar zirconium, CW and 
fully annealed zircaloy sheet etc. Best fit was obtained 
using a fully annealed zircaloy sheet specimen. Using 
high intensity peaks a curve with Y-axis as (integral breadth)2 
and X-axis as tan θ was obtained (figure 6). The fit was 
done using second order polynomial for tanθ (X-axis) and 
yielded the following equation for instrumental broaden-
ing 
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Figure 8. Comparison of (a) D, (b) ε and (c) ρ values determined using different analysis procedures. 
 
 

Table 6. Comparison of the results of present study with published ones. 

Sample Source Technique D (Å) ε ρ (m/m3) 
 

Zr–2⋅5 Nb CWSR (400°C/24 h) Cheadle (1982) X-ray – – 5 to 7 × 1014 
Zr–2⋅5 Nb CWSR (400°C/24 h) Srivastava and Banerjee (1992) TEM – – 1 to 5 × 1014 
Zr–2⋅5 Nb CWSR (400°C/2 h) Holt (1976) X-ray 600 – 8 × 1014 
Zr–2⋅5 Nb CW (20%) Holt (1976) X-ray – – 17 × 1014 
Zr powder CW annealed (550°/18 h) Chatterjee and Sengupta (1974) X-ray 500 0⋅0007 – 
Zr–2⋅5 Nb CW (as pilgered) Present study X-ray 274 0⋅0028 24⋅5 × 1014 
Zr–2⋅5 Nb CWSR(400°C/24 h) Present study X-ray 534 0⋅0017 7⋅5 × 1014 

 
 
  (b in degree)2 = 0⋅01029 
   + 0⋅01492tanθ + 0⋅01118 tan2θ, 
   Degree of fit (r2) = 0⋅99 and σ = 0⋅0018. 

The high degree of fit ensures correct correction due to 
instrumental effects. The above equation was used for 
calculating instrumental broadening (b) at any given θ. 
 The observed integral breadth (B) in the sample (for 
measurement of D, ρ and ε) is corrected for instrumental 
broadening (b) to give corrected integral breadth (β ) us-
ing the following relationship (Rama Rao and Anan-
tharaman 1963). 
 
  β = B – (b2/B). (14) 
 
This correction assumes that the peak shape is somewhat 
between Gaussian and Cauchy (Lorentzian) that leads to 
more exact results. 
 The broadening in X-ray line consists of contributions 
due to D and ε. Following relationship is used to separate 
the contributions from each of them for further calcula-
tion of ρ (Sharp et al 1965). 
 
  (β cosθ/λ)2 = (1/D)2 + (4ε sinθ/λ)2, (15) 
 
where β = instrumental corrected broadening (expressed 
in radians), θ = Bragg’s diffraction angle, D = coherent 
domain size (Å), ε = micro strain and λ = wave length 
(Å). 
 The peak data is obtained using the same settings as in 
Fourier analysis. At least 6 peaks of high intensity be-
tween 2θ = 34 to 99° were taken and plots of (β cosθ/λ)2 

vs (sinθ/λ)2 (figure 7) were obtained. From the plots, D 
and ε were calculated using the following equations 
 
  intercept = 1/D2, (16) 
 
  slope = 16ε2. (17) 
 
Dislocation density can be calculated from D and ε using 
(10), (11) and (12) mentioned earlier. 

4. Discussion 

The variation of D, ε and ρ after stress relieving and an-
nealing the cold worked material is shown in figures 8a–c. 
The results of the two techniques used are well in agree-
ment with each other. While in case of integral breadth 
method 6 different peaks were used. In this method the 
effect of domain size, microstrain and stacking fault on 
broadening of these peaks is included. In case of the fou-
rier analysis, only fault unaffected peaks i.e. those 
satisfying the criteria H–K = 3n (9), were taken. Hence the 
calculated domain size using the fourier analysis does not 
include the effect of stacking faults. The observation that 
the domain size calculated from the two methods is simi-
lar implies that the stacking fault probability in this mate-
rial is extremely low. These observations are in line with 
the observations of Mukerjee et al (2000). 
 The reported results in literature on similar conditions 
for this material are tabulated in table 6. The results of X-
rays are in good agreement with TEM. The direct obser-
vation transmission electron microscopy (TEM) technique 
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has also been used for these measurements. This tech-
nique requires preparation of thin foil which is time con-
suming and expensive. In contrast the X-ray methods can 
be used most effectively where large number of measure-
ments are required with minimum sample preparation, 
like assessment of irradiation damage during the post irra-
diation examination of the reactor components. 
 The results obtained from the tensile tests on sample 
numbers 1 to 4 are reported in table 7. The modified rela-
tionship between the YS in Zr 2⋅5 Nb material and the 
dislocation density is as follows (Holt 1976) 
 
  σy = σ0 + σNb + mαGb√ρ, (18) 
 
where σy is yield stress, σ0 the yield stress at zero dislo-
cation density for pure zirconium of a given grain size, 
σNb the solution strengthening effect due to niobium, m 
an orientation parameter, α the geometric factor, G the 
shear modulus, b the Burger’s vector of the 〈a〉 disloca-
tion and ρ the dislocation density. 
 Using the experimental data for the dislocation density 
and the YS measured at 573 K (table 7), an empirical rela-
tionship has been derived by plotting a curve between YS 
and √ρ (figure 9). 
 
  YS in MPa (at 573 K) = 4⋅963 × 10–6*√ρ  
             (in 1/m2) + 274⋅54, (19) 
 
 Coefficient of correlation (r2) being 0⋅94. 
 
 Using the above equation the YS has been calculated and 
tabulated in table 7. The calculated results using the dis-
location density data are found in very good agreement 
with the measured results. 
 
The slope and the intercept of (18) can be calculated from 
the data on σ0, σNb, m, α, G, and b available in the litera-
ture. The yield stress (σ0) of fully annealed sponge zirco-
nium at 573 K is 230 MPa with grain size of 0⋅7 µm 
(Coleman and Hardie 1966). It is observed that the 
strengthening effect of niobium in zirconium levels off at 
0⋅4 wt% Nb, the additional strengthening due to addition 
 
 
Table 7. Measured yield strength (YS) at 573 K and calcu-
lated YS from (18) for samples 1 to 4. 

Sample   Measured Calculated 
no. Sample description YS (MPa) YS (MPa) 
 

1 As pilgered 523 531 
2 Pilgered + stress relieved 434 410 
  (400°C, 24 h) 
3 Pilgered + SR (400°C, 24 h) + 393 384 
  annealed (450°C, 3 h) 
4 Pilgered + SR (400°C, 24 h) + 334 357 
   annealed (500°C, 3 h) 

 

Figure 9. Plot of measured yield strength and square root 
(dislocation density) showing linear relationship with high de-
gree of fit for the samples 1 to 4. 
 
 
 
of Nb has been calculated from room temperature to 
775 K (Douglass 1963). σNb = 45 MPa has been obtained 
by interpolation at 573 K. m can be taken as 2 after Aqua 
and Owens (1967), α can be taken as 0⋅28 after Aqua and 
Owens (1967), G be taken as 27 GPa at 573 K after 
Northwood et al (1975), b can be taken as 3⋅231 Å. 
 The slope of the curve calculated from the data in lite-
rature is 4⋅88 × 10–6 (i.e. mαGb) and the intercept (σ0 + 
σNb) as 275 which is very close to that obtained in the 
empirical relationship. Thus using this relationship the 
YS of the material at 573 K can be obtained if the dislo-
cation density is known. 

5. Conclusions 

(I) Techniques using X-ray line broadening analysis 
have been used for measurement of coherent domain size, 
microstrain and dislocation density for the Zr–2⋅5% Nb 
pressure tubes, a critical structural material for the 500 MW 
nuclear PHWR. 
(II) Data on D, ε and ρ obtained by X-ray is consistent 
with the reported data using TEM methods. 
(III) There is a progressive increase in the coherent domain 
size and decrease in microstrain and dislocation density 
with higher annealing temperature. 
(IV) YS of the material is proportional to square root of its 
dislocation density. An empirical relationship has been 
obtained for the YS to be calculated from the dislocation 
density. On four samples with different heat treatments, 
the measured YS and the calculated YS from the disloca-
tion density are in agreement. 

Acknowledgements 

The authors gratefully acknowledge the keen interest taken 
during the work by Dr C Ganguly, NFC, Hyderabad. 



XRD  LPA  for  defect  study  in  Zr–2⋅5 Nb  material 

 

67

References 

Aqua E M and Owens C M 1967 Trans. Met. Soc. AIME 239 
155 

Caglioti G, Paoletti A and Ricci F P 1958 Nucl. Instrum. Meth. 
3 223 

Chatterjee S K and Sengupta S P 1974 J. Mater. Sci. 9 953 
Cheadle B A 1982 Nucl. Technol. 57 231 
Coleman C E and Hardie D 1966 J.I.M. 94 387 
Douglass D L 1963 J. Nucl. Mater. 9 252 
Einarsson B 1972 Information Processings 71 1346 
Holt R A 1976 J. Nucl. Mater. 59 234 
Keijser Th H, De Langford D I, Mittemeijer E J and Vogels 

A B P 1982 J. Appl. Cryst. 15 308 

Mukherjee P, Chattopadhyay S K, Chatterjee S K, Meikap A K, 
Barat P, Bandopadhyay S K, Sen P and Mitra M K 2000 Met. 

Trans. A31 2405 
Northwood D O, Bahen L E and London I 1975 J. Nucl. Mater. 

155 299 
Rama Rao P and Anantharaman T R 1963 Z. Metallk. 54 658 
Sharp J V, Makin M J and Christian J W 1965 Phys. Status 

Solidi 11 845 
Srivastava D and Banerjee S BARC Report 1992/1/011 
Stokes A R 1948 Proc. Phys. Soc. (London) 61 382 
Wilson A J C 1962 Proc. Phys. Soc. (London) 8 286 
Warren B E 1968 X-ray diffraction (Reading Mass: Addison-

Wesley) p. 225 
Wagner C N J and Aqua E N 1964 Adv. X-ray Anal. 7 46 

 
 
 

 
 

 
 


