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Noisy quantum walks are studied from the perspective of comparing their quantumness as defined
by two popular measures, measurement-induced disturbance (MID) and quantum discord (QD).
While the former has an operational definition, unlike the latter, it also tends to overestimate non-
classicality because of a lack of optimization over local measurements. Applied to quantum walks,
we find that MID, while acting as a loose upper bound on QD, still tends to reflect correctly the
trends in the behavior of the latter. However, there are regimes where its behavior is not indicative
of non-classicality: in particular, we find an instance where MID increases with the application of
noise, where we expect a reduction of quantumness.

I. INTRODUCTION

Many useful quantities in quantum information the-
ory (such as various quantifications of entanglement and
channel capacities) lack an operational definition. Quan-
tifying the degree of nonclassicality or quantumness in a
state is one such. Intuitively, we expect that entangle-
ment captures all of the nonclassicality in a correlation.
We now know that in general this is not the case and
that, for mixed states, non-classicality, nonlocality, and
entanglement are not identical.

In the case of quantifying the quantumness of a bi-
partite state, following the proposal of quantum discord
(QD) [1], which requires an extremization over local mea-
surement strategies, measurement-induced disturbance
(MID) [2] was proposed as an operational measure. Re-
cently, QD has received several operational interpreta-
tions, in terms of the efficiency of Maxwell’s demon [3],
the entanglement consumed [4] or quantum communica-
tion [5] during state merging, and distillable entangle-
ment in quantum measurement [6]. However, the dif-
ficult posed by the required optimization remains. In
contrast, MID requires no such optimization, instead it
uses the local measurement strategy defined by the di-
agonalization of the reduced density operators. If MID
were a good indicator of non-classicality, in particular, if
it correctly reflected the behavior of QD, we would have a
happy instance of an operational proxy for genuine non-
classicality. However, Ref. [7] has reported several diffi-
culties with the use of MID for a two-qubit system. In
particular, there are states of vanishing (symmetrized)
discord for which MID is maximal. One way to amelio-
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rate the performance of MID is to optimize it over all
possible local measurements [7]. In this work, we com-
pare these two indicators of non-classicality by applying
them to unitary and noisy discrete-time quantum walk
(DTQW), treated as a (2× k)-dimensional system.
Quantum walks (QWs) [8, 9], which are the quantum

analogs of classical random walks (CRWs), have been
extensively studied as a quantum algorithm [10–16], to
demonstrate coherent control over atoms [17], to explain
phenomena such as the breakdown of an electric-field
driven system [18], and as direct experimental evidence
for wavelike energy transfer within photosynthetic sys-
tems [19, 20]. Decoherence in a QW and the transition
of a QW to a CRW is quite important from the viewpoint
of practical implementation, and it has been studied by
various authors [21–27]. In particular, in Refs. [24–26],
we investigated some qualitatively different ways in which
environmental effects suppress quantum superposition in
a QW on a line and on an n−cycle.
This report is arranged as follows. In Sec. II we briefly

introduce the DTQW model on a line and on an n−cycle
as well as the noise channel used for our study. In Sec.
III we compare and contrast the quantumness of a QW
subjected to noise, as computed by QD and MID, to
quantify the quantumness and investigate the proximity
of the outcomes using the two measures, MID and QD.
Finally, we conclude in Sec. IV.

II. DISCRETE-TIME QUANTUM WALK ON A

LINE AND AN n−CYCLE

A DTQW in one dimension is modeled as a particle
consisting of a two-level coin (a qubit) existing in the
Hilbert space Hc, spanned by |0〉 and |1〉, and a posi-
tion degree of freedom existing in the Hilbert space Hp,
spanned by |ψx〉, where x ∈ I, the set of integers. In an n-
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FIG. 1: (Color online) QD and MID for a unitary walk using
Bπ/2 as a quantum coin operation on a 51-cycle (inset is for
a 100-iteration walk on a line). For a noiseless walk, the
quantumness using MID and QD is the same (see Theorem
1).

cycle walk, there are only n allowed positions, and in ad-
dition the periodic boundary condition |ψx〉 = |ψx mod n〉
is imposed. For our study, a t-step coined QW is gen-
erated by iteratively applying a unitary operation W ,
which acts on the Hilbert space Hc ⊗Hp:

|Ψt〉 =W t|Ψin〉, (2.1)

where |Ψin〉 = 1√
2
(|0〉 + i|1〉) ⊗ |ψ0〉 is an initial state

of the particle and W ≡ U(B ⊗ 1), where U(2) ∋ B =

Bθ ≡
(

cos(θ) sin(θ)
sin(θ) − cos(θ)

)

is the coin operation. U is

the controlled-shift operation

U ≡ |0〉〈0| ⊗
∑

x

|ψx − 1〉〈ψx|+ |1〉〈1| ⊗
∑

x

|ψx + 1〉〈ψx|.

(2.2)
For an n−cycle, |ψx − 1〉 and |ψx + 1〉 are replaced by
|ψx−1 mod n〉 and |ψx+1 mod n〉, respectively. The proba-
bility of finding the particle at site x after t steps is given
by p(x, t) = 〈ψx|Trc(|Ψt〉〈Ψt|)|ψx〉.
To quantify quantumness when noise is applied to a

DTQW, we will consider the amplitude-damping channel
[28] parametrized by λ which has the following operator-
sum representation :

E0 ≡
[√

1− λ 0
0 1

]

; E1 ≡
[

0 0

0
√
λ

]

(2.3)

where λ ranges from the noiseless case (0) to that of
maximum noise (1). More general noise models can be
used, such as a dissipative interaction in the presence of a
squeezed thermal bath [29], but the above simple model
captures all the essential physics, and is hence found to
be sufficient for present purposes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Q
ua

nt
um

ne
ss

Noise parameter λ

MID 70 steps
QD 70 steps
MID 200 steps
QD 200 steps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

MID

QD

FIG. 2: (Color online) QD and MID for a quantum walk with
the increase of noise level due to an amplitude-damping chan-
nel on a 51-cycle, after 70- and 200-iterations, respectively
(inset is for a walk on a line after 100-iterations). Owing to
the closed, periodic dynamics in the n−cycle, the effect of
very little noise is amplified leading to a steep reduction in
the quantumness. We note that MID and QD follow a similar
trend. In general, QD ≤ MID [7].

III. QUANTFYING QUANTUMNESS

A number of measures for quantifying quantumness
exist [1, 2, 30–32], most of which are not operationally
defined. Except in the simplest cases, extensive numerics
would be needed. From these, we selected measurement-
induced disturbance (MID) [2], which has an operational
definition, and quantum discord (QD) [1], which involves
extremization over measurement strategies. We consider
the classicalization of a QW on a line and on an n−cycle
under the influence of the amplitude-damping channel
Eq. (2.3).
a. Measurement-induced disturbance. Given a bi-

partite state ρ existing in the Hilbert space HC ⊗HP , let
the reduced density matrices be denoted by ρC and ρP .
Let ρC =

∑

i p
i
CΠ

i
C and ρP =

∑

j p
j
PΠ

j
P . The measure-

ment induced by the spectral resolution of the reduced
states is

Π(ρ) ≡
∑

j,k

Πj
C ⊗Πk

P ρΠ
j
C ⊗Πk

P , (3.1)

which may be considered classical in the sense that there
is a (unique) local measurement strategy, namely, Π, that
leaves Π(ρ) unchanged. This strategy is special in that it
produces a classical state in ρ while keeping the reduced
states invariant.
According to Luo [2], a reasonable measure of quan-

tumness is MID, given by

Q(ρ) = I(ρ)− I[Π(ρ)], (3.2)

where I(·) is mutual information. Accordingly, Eq. (3.2)
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is interpreted as the difference between the total and clas-
sical correlations.
b. Quantum discord. Quantum discord [1] is given

by:

D(P |C) = I(P : C)Q − J (P : C)Q{ΠC
j
} (3.3)

= S(C)− S(P,C) + S(P |{NC
j }) (3.4)

= S(P |{NC
j })− S(P |C), (3.5)

where S(P |{NC
j }) =

∑

j pjS(ρX|NC
j
). ρX|NC

j
=

TrC [IP ⊗ NC
j ρP,C ]/ Tr[NC

j ρP,C ] is the state of P after

outcome NC
j . This is in general computationally very

intensive. However, it has been shown that for qubit
systems it suffices to consider rank-1 positive operator
valued measures (POVMs) [34], which for qubits reduces
to projective measurements.
We have numerically evaluated D(P |C) by minimiz-

ing Eq. 3.5 by performing projective measurement over
all bases for C parametrized by α and β : {cos(α)|0〉 +
eiβ sin(α)|1〉, e−iβ sin(α)|0〉−cos(α)|1〉}. Because of The-
orem 1 below, a comparison of QD and MID is interesting
only for mixed states.

Theorem 1 For pure states, MID, QD and entangle-

ment are identical.

D(P |C) = S(P |{NC
j })− S(P |C)

= S(P |{NC
j })− S(P,C) + S(C)

= S(P |{NC
j }) + S(C).

Proof. The expression P |{NC
j } is the state of P after

C is measured. In the case of entangled pure bipartite
states, by virtue of Schmidt decomposition, when the
outcome of measuring C is known, the state of P after
measuring C is also exactly known and hence is pure.
Therefore S(P |{NC

j }) = 0. Hence, the expression for
D(P |C) reduces to S(P ) = S(C) in the pure case. Again,
by Eq. (3.2), MID equals 2S(C)−S(C) = S(C), as does
entanglement [2]. �

Two simple consequences are that for pure bipartite
systems, entanglement captures all of the quantumness,
and that QD is symmetric in this case. For mixed states,
the situation is of course complicated. One fact, however,
is the following result.

Theorem 2 QD ≤ MID.

Proof. Noting that ρA = TrB(ρAB) = TrB(Π(ρAB)),
we find Q(ρCP ) = SΠ(P |C) − S(P |C), where SΠ(P |C)
is the conditional entropy evaluated on Π(ρ), in view
of Eq. (3.2). Comparing this with (3.5) we find that
Q(ρCP ) − D(P |C) = SΠ(P |C) − S(P |{NC

j }), which
is always positive for the following reason. Clearly,
SΠ(P |{NC

j }) ≥ S(P |{NC
j }). Now, SΠ(P |C) =

S(
∑

j,k p(j, k)|j, k〉PCPC〈j, k|) − S(
∑

j p(j)|j〉CC〈j|) =
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FIG. 3: (Color online) The quantumness using MID and QD,
for a unitary walk on a 51-cycle with different coin parameters
θ in Bθ , is the same. We note that the frequency of dominant
oscillations falls with θ, a behavior we expect from the fact
that the speed of a wave packet is proportional to

√
cos θ [33].
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FIG. 4: (Color online) Quantumness on a walk with an in-
crease in noise level on a 51-cycle using Bπ/4 as the coin op-
eration. We note that, although both quantumness measures
show similar trends including with fluctuations, in the regime
of t ∼ 10 to t ∼ 60, MID increases (for λ = 0.01), whereas
QD evinces the expected behavior.

−
∑

j,k p(k)p(j|k) ln(p(j|k)) =
∑

k p(k)SΠ(P |C)k =

SΠ(P |{Ej}), where p(j, k) is the joint probability of
outcomes j and k by measuring Π(ρPC) in the eigen-
bases Ej of their respective reduced density operators,
p(j) ≡ ∑

k p(j, k), p(j|k) = p(j, k)/p(k) and SΠ(P |{Ej})
is the average uncertainty in the first register by measur-
ing the second register in the diagonal basis of the latter’s
density operator. Clearly, SΠ(P |{Ej}) ≥ SΠ(P |{NC

j }),
and we have the required result. �

Figure 1 depicts QD and MID for a unitary walk for
pure states, which are identical in this case as noted in
Theorem 1. We note that whereas the quantumness for
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a walk on a line stabilizes eventually, that for a walk on
a cycle shows a periodic increase in quantumness, which
is associated with ‘crossovers’, where the left- and right-
moving partial waves interfere. Figure 2 shows the ex-
pected decrease of quantumness with noise, for both lin-
ear and cyclic walks. While MID is seen to upper-bound
QD everywhere (except at extremal points, where they
are identical), it still tends to reproduce the features of
the latter’s plot, such as the steep fall and the plateau
thereafter.
Figure 3 depicts the θ-dependence of the periodicity of

the crossovers of the left- and right- moving components
of the walk. This may be understood in terms of the
wave-packet dynamics implied by the walk. In Ref. [33],
it was shown that the wave velocity obtained by recasting
a DTQW as a relativistic-like equation is proportional to√
cos θ.
Figure 4 presents MID and QD as a function of time

for two different noise levels. They present a similar de-
gree of sensitivity (with fluctuations roughly in tune with
magnitude) and an expected overall reduction with noise.
However, MID shows a rise in the regime t ∼ 10 to t ∼ 60,
for the noise parameter λ = 0.01, which would clearly
be unphysical for an indicator of non-classicality, as cor-
roborated by the monotonic fall of QD in this regime.
This pathological behavior can be attributed to the non-
optimization over local measurements in MID. It may be
predicted that if the optimization were performed, the

resulting ameliorated MID [7] would show monotonically
decreasing behavior. If one could analytically isolate the
class of states for which MID applied to a DTQW shows
such pathological behavior, and we are able to confirm
that the specific instance of walk dynamics does not in-
volve such states, then presumably one could still employ
MID as a useful and easy-to-compute indicator of quan-
tumness [26].

IV. CONCLUSION

Noisy quantum walks have been studied from the per-
spective of comparing MID and QD as indicators of non-
classicality, when applied to linear and cyclic DTQWs.
MID acts as a loose upper bound to QD, sometimes prop-
erly reflecting even fine trends in the latter’s behavior.
However, there are regimes where it obviously manifests
artifacts due to the lack of optimization over local mea-
surements.
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