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Aim:Numerous drugs are beingwidely prescribed for COVID-19 treatment without any direct evidence for

the drug safety/efficacy in patients across diverse ethnic populations. Materials & methods: We analyzed

whole genomes of 1029 Indian individuals (IndiGen) to understand the extent of drug–gene (pharmacoge-

netic), drug–drug and drug–drug–gene interactions associated with COVID-19 therapy in the Indian pop-

ulation. Results: We identified 30 clinically significant pharmacogenetic variants and 73 predicted delete-

rious pharmacogenetic variants. COVID-19-associated pharmacogenes were substantially overlapped with

those of metabolic disorder therapeutics. CYP3A4, ABCB1 and ALB are the most shared pharmacogenes.

Fifteen COVID-19 therapeutics were predicted as likely drug–drug interaction candidates when used with

four CYP inhibitor drugs. Conclusion:Our findings provide actionable insights for future validation studies

and improved clinical decisions for COVID-19 therapy in Indians.
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It has been well established that genetic variants among several other factors significantly explain inter-individual

differences in therapeutic response [1,2]. Several examples of large-scale ethnic differences in treatment response have
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been attributed to differential prevalence of these pharmacogenetic (PGx) variants among distinct populations [3,4].

As the novel COVID-19 pandemic continues to present unprecedented challenges to healthcare systems across the

world, an array of new vaccines and repurposed or novel therapeutics are being developed, undergoing clinical trials

or are currently in use in different parts of the world [5]. Given the rapid worldwide spread of this novel disease,

many of these therapeutics, although unapproved or lacking adequate direct evidence for efficacy and safety, are

being widely used in COVID-19 patients across age groups, ethnic backgrounds and diverse underlying health

conditions [1]. It is therefore critical to harness parallel efforts toward understanding the pharmacogenomics of

COVID-19 therapies and develop population-specific PGx maps for the widely used drugs. Defining population-

specific actionable PGx biomarkers for COVID-19 therapy can potentially help clinicians choose appropriate

treatment regimens and improve overall treatment outcomes. A few recent studies have analyzed and reviewed the

clinical implications of human genome interactions with repurposed drugs [3,6] most of which have genotype-guided

dosing guidelines [7]. Moreover, it is also crucial to assess drug interactions and the associated adverse events [7].

Some of the common examples of adverse drug reactions in COVID-19 patients involve the use of experimental

drugs like chloroquine, hydroxychloroquine, azithromycin and lopinavir/ritonavir which can cause patients to

develop long QT syndrome and torsades de pointes [2,3]. Some of them already have pharmacogenetic markers

listed on their US FDA-recommended drug labels like G6PD gene for chloroquine and hydroxychloroquine and

IFNL3 for ritonavir [4,8,9]. Similarly, variants in ITPA gene are reported to have protective effects against hemolytic

anemia, which is a well-known adverse effect of ribavirin, a widely prescribed RNA polymerase inhibitor drug

in COVID-19 patients that is originally indicated for Hepatitis C infection [10]. In addition to these drug–gene

interactions, drug–drug interactions (DDIs) are also a key factor in impaired COVID-19 treatment response owing

to the use of several drugs in tandem to aid the recovery of patients from multiple short-term and long-term

COVID-19 complications in addition to their pre-existing conditions [11].

Since its emergence in Wuhan, China in December 2019, millions of individuals have been infected with

COVID-19 across the world [12]. India, the world’s second most populous country, is also witnessing a significant

number of cases and deaths [13]. In the wake of such massive outbreaks in India, the limited medical resources call

for rapid and robust tools that can guide clinicians toward effective clinical management of COVID-19 patients.

Defining the PGx landscape of COVID-19 drugs in the Indian population can potentially guide clinicians toward

adopting effective therapeutic regimens for COVID-19 patients.

Whole genome sequencing of large and diverse human populations across the world over the last two decades have

generated great insights about human genetic diversity, evolution and migration [14]. In the last 5 years, several large-

scale national genomic sequencing initiatives have been established with the aim of advancing genomic medicine

and generating population-specific evidence for its wider adoption in clinical practice [15]. Recently, India has

initiated its own national genome sequencing initiative, the IndiGen Project, which in its first phase has successfully

sequenced over 1029 Indian whole genomes belonging to diverse ethnic groups in India [16]. The IndiGen dataset

along with the South Asian subpopulations included in the 1000 Genomes project (n = 489) collectively represent

one of the most comprehensive genomic representations of the geographic and ethnic diversity of the Indian

population available as of today. Systematic mining of PGx variants from such population-scale genomic data can

generate critical actionable insights for the population as a whole.

The current study aims to understand the extent of drug–gene (PGx), DDI and drug–drug–gene interactions

(DDGI) associated with COVID-19 in the Indian population. We provide a comprehensive population-specific

PGx landscape for drugs that are widely used for COVID-19 treatment using large-scale genomic variation datasets

representing the Indian population. We also highlight actionable PGx markers that are relevant for Indian COVID-

19 patients which can enable clinicians to make informed prescription decisions and potentially improve overall

therapeutic outcomes. To the best of our knowledge, this is the first comprehensive study of PGx associations,

DDIs and DDGIs associated with therapeutics used in COVID-19 in the Indian population.

Materials & methods

Study population & datasets

The genetic variants and their allele frequencies in the cosmopolitan Indian population were obtained from Variant

Calling Format of 1029 whole genome sequences of unrelated Indian individuals, sequenced across India as a part

of IndiGen [16] study. The participants of the IndiGen study spread across most states in India [16]. The variants are

annotated according to the GRCh38 human reference genome and genotype information of 55,898,112 genetic

variations consisting of SNVs and indels.
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Quality control

We performed genotype and individual level missingness tests (95%) and Hardy–Weinberg disequilibrium test (p

< 5 × 10-7) using PLINK v1.09 [17] and obtained 53,672,515 SNVs which were used for further analysis.

Pharmacogenomic variant analysis workflow

Variant annotation

ANNOVAR [18] was used to annotate variants using dbsnp v150 as the reference variation database and RefGene

for gene annotations, and also used to compile the allele frequencies of the variants from global variation projects

such as 1000 Genomes Phase 3 (1KGP3) database [19], gnomAD database [20], Qatar and Greater Middle East

(GME) variome database [21].

Prediction of potential deleterious variants

The functional impact of exonic variants were predicted using SIFT [22], PolyPhen2 [23] and MutationTaster [24]. The

exonic nonsynonymous variants that were predicted deleterious (SIFT: Damaging; PolyPhen2: Probably Damaging

and MutationTaster2: Disease causing) by at least two of these tools were taken for downstream analysis.

Data collection

Information about therapeutics used in the management of COVID-19 and their clinical trial information was

curated from PharmGKB [25] and DrugBank [26] databases (accessed on 17 August 2020). PharmGKB has a list of 54

therapeutics involved in COVID-19 clinical trials that inhibit viral replication or viral entry and anticytokine/anti-

inflammatory drugs. DrugBank database has published a list of 38 drugs which are experimentally unapproved

treatments for COVID-19. All these drugs were overlapped and obtained a unique list of 89 drugs that are widely

used for COVID-19 treatment (Table 1 & Supplementary Table 1).

Annotation of pharmacogenetic variants from PharmGKB & DrugBank

The latest release of clinical annotations of PGx variants were obtained from PharmGKB database (release dated

5 August 2020) which included 4077 annotations linked to SNVs and 491 linked to haplotype variants. COVID-

19 therapy associated PGx annotations were further shortlisted using the list of 89 drugs and population-specific

allele frequencies were further estimated for the relevant PGx variants.

Stargazer [27], a tool for genotyping PGx genes from next generation sequencing data, was used to call star alleles

in the PGx genes from the whole genome data of IndiGen and 1KGP3 database. Then, allele frequency (AF) was

calculated to evaluate the prevalence of these variants.

A comprehensive list of pharmacogenes were downloaded from DrugBank and overlapped with our list of drugs

to fetch associated genes. The predicted deleterious variants in the IndiGen dataset were overlapped with this list

to generate a list of potential deleterious PGx variants in the Indian population.

Construction of drug pathways & visualization

Pharmacogenes related to the PGx variants, those were functionally disrupted in the Indian population with an

allele frequency of more than 1% were fetched. A Sankey diagram, depicting the drug function disruption pathway

was generated using flourish studio [28] by mapping these genes to the associated drugs in our list and DrugBank

database.

Statistical analysis

Fisher’s exact test was used to compare the Indian allele frequencies with the global populations (1KGP3-ALL

and gnomAD-ALL) and also other regional populations (QATAR-ALL and GME-ALL) to assess the significant

differences in allele frequencies with respect to Indian population.

Drug–drug interaction analysis

The COVID-19 associated drug-gene interactions were visualized in the form of a network using Cytoscape [29].

The drug–gene associations were obtained from the DrugBank database. The gene labels are proportional to the

degree of the node whereas the drug labels are sized according to a score that estimates the proportion of shared PGx

genes associated with each drug. The score was calculated as the cumulative average sum of gene degrees associated

future science group www.futuremedicine.com 605



Research Article Sahana, Sivadas, Mangla et al.

Table 1. List of proposed COVID-19 drugs.

Drug DrugBank ID Category PharmGKB variants

(Level 1 & 2) (n)

DrugBank targets

(n)

DrugBank enzymes

(n)

DrugBank

transporters/carriers

(n)

Anticytokine/anti-inflammatory

Tocilizumab DB06273 Interleukin inhibitor, monoclonal

antibodies (anti IL-6)

1 1

Sarilumab DB11767 Interleukin inhibitor, monoclonal

antibodies (anti IL-6)

6 1

Anakinra DB00026 Interleukin inhibitor (anti IL-1) 1

Siltuximab DB09036 Interleukin inhibitor, monoclonal

antibodies (anti IL-6)

1 1

Leflunomide DB01097 Immunomodulators 3 2 1

Clazakizumab DB12849 Interleukin inhibitor, monoclonal

antibodies (anti IL-6)

Prazosin DB00457 Cardiovascular agents 6 4 1

Canakinumab DB06168 Interleukin inhibitor, monoclonal

antibodies (anti IL-1�)

1

Naltrexone DB00704 Analgesics 4 1

Ketamine DB01221 Anesthetics 11 5

Sirukumab DB11803 Interleukin inhibitor, monoclonal

antibodies (anti IL-6)

Fluoxetine DB00472 Antidepressants 1 7 8 3

Astegolimab Interleukin inhibitor, monoclonal

antibodies (anti IL-33)

Ulinastatin DB12038 Protease inhibitor

Mavrilimumab DB12534 Monoclonal antibody (anti

GM-CSF)

Axatilimab Monoclonal antibody (anti

GM-CSF)

Lenzilumab DB15148 Monoclonal antibody (anti

GM-CSF)

Sargramostim DB00020 Immunomodulators 5

Tofacitinib DB08895 Immunomodulators 4 2 1

Leronlimab DB05941 Monoclonal antibodies (anti CCR5) 1

Eculizumab DB01257 Monoclonal antibodies (anti C5) 1

Dexamethasone DB01234 Corticosteroids 5 15 7

Apremilast DB05676 Immunomodulators 1 3 1

Cenicriviroc DB11758 Antiviral agents

Icatibant DB06196 Analgesics 2

Razuprotafib Angiopoietin modulator

Naproxen DB00788 Analgesics 2 10 6

Baricitinib DB11817 Immunomodulator 4 1 7

Nicotine DB00184 Cholinergics 8 13 13 5

Disulfiram DB00822 Acetyl aldehyde dehydrogenase

inhibitors

2 3 1

Inhibit viral entry

Hydroxychloroquine DB01611 Antiprotozoals 3 3 3

Chloroquine DB00608 Antiprotozoals 6 5 2

Camostate mesylate

(Camostat)

DB13729 Protease inhibitor 4

Umifenovir DB13609 Antiviral agents 10

DAS181 DB15313 Recombinant proteins

Losartan DB00678 Cardiovascular agents 1 9 6

Isotretinoin DB00982 Vitamin A derivative 2 1 1

Telmisartan DB00966 Cardiovascular agents 2 2 4

Ramipril DB00178 Cardiovascular agents 2 1 2
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Table 1. List of proposed COVID-19 drugs (cont.).

Drug DrugBank ID Category PharmGKB variants

(Level 1 & 2) (n)

DrugBank targets

(n)

DrugBank enzymes

(n)

DrugBank

transporters/carriers

(n)

Nicotine DB00184 Cholinergics 8 13 13 5

Inhibit viral replication

Remdesivir DB14761 Antiviral agents 3 6

Favipiravir DB12466 Antiviral agents 4 5

Ribavirin DB00811 Antiviral agents 13 2 2 2

Darunavir DB01264 Antiviral agents 2 4

Clevudine DB06683 Antiviral agents

Lopinavir DB01601 Antiviral agents 1 6 6

Ritonavir DB00503 Antiviral agents 1 1 9 11

Interferon alfa-2b,

recombinant

DB00105 Immunomodulator 1 2 1

Famotidine DB00927 Gastrointestinal agents 1 1 4

Rintatolimod Immunomodulator

EIDD-2801 DB15661 Experimental unapproved

treatment for COVID-19

Peginterferon

lambda-1a

DB14767

AT-527

Merimepodib DB04862 Antiviral agents,

immunomodulator

Disulfiram DB00822 Acetyl aldehyde dehydrogenase

inhibitors

2 3 1

Others

Deferoxamine DB00746 Chelating agents 1 1

Tranexamic acid DB00302 Hemostatics 1 1

Ruxolitinib DB08877 Antineoplastic and

immunomodulating agents

2 1

Sirolimus DB00877 Immunomodulators 1 3 3 3

Enoxaparin DB01225 Cardiovascular agents 2 1

Fluvoxamine DB00176 Antidepressants 1 2 7 2

Chlorhexidine DB00878 Antiseptics 1

Acalabrutinib DB11703 Antineoplastic and

immunomodulating agents

1 2 1

AT-001 DB15121

Dapagliflozin DB06292 Oral hypoglycemic agents 1 9 1

Progesterone DB00396 Steroidal hormones 10 10 10

Acetylcysteine DB06151 Mucolytics 10 2

Heparin DB01109 Hemostatics 12 1 1

Dornase alfa DB00003 Mucolytics

Nitric oxide DB00435 Cardiovascular agents 3 4

Galidesivir DB11676 Experimental unapproved

treatment for COVID-19

Human interferon beta DB14999 Immunomodulator 1 1 1

Triazavirin DB15622 Antiviral agents

TMC-310911 DB15623 Antiviral agents

AZD1222 DB15656 Experimental unapproved

treatment for COVID-19

Fingolimod DB08868 Immunomodulators 5 3 4

Methylprednisolone DB00959 Corticosteroids 2 7 2

Bevacizumab DB00112 Antineoplastic and

immunomodulating agents

9

Azithromycin DB00207 Antibacterial agents 1 1 2
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Table 1. List of proposed COVID-19 drugs (cont.).

Drug DrugBank ID Category PharmGKB variants

(Level 1 & 2) (n)

DrugBank targets

(n)

DrugBank enzymes

(n)

DrugBank

transporters/carriers

(n)

N4-Hydroxycytidine DB15660 Experimental unapproved

treatment for COVID-19

Elbasvir DB11574 Antiviral agents 4 1

GS-441524 DB15686 Antiviral agents

Tridecactide DB15687 Experimental unapproved

treatment for COVID-19

Metenkefalin DB12668 Experimental unapproved

treatment for COVID-19

2 1

Vazegepant DB15688 Experimental unapproved

treatment for COVID-19

1

Ibuprofen DB01050 Analgesics 2 10 9 9

Anti-SARS-CoV-2

REGN-COV2

DB15691 Experimental unapproved

treatment for COVID-19

COVID-19 convalescent

plasma

DB15692 Experimental unapproved

treatment for COVID-19

INO-4800 DB15693 Experimental unapproved

treatment for COVID-19

Colchicine DB01394 Musculoskeletal system 1 4 2

LY-CoV555 DB15718 Experimental unapproved

treatment for COVID-19

with each drug.

Drug interaction score =
∑

Denzyme−i /Nenzymes +
∑

DTarget−i/NTargets +
∑

DTransporter−i/NTrasnporters

where Denzyme - i, DTarget - i and DTransporter - i are the degrees of enzyme i, target i and transporter i associated with

the drug and Nenzymes, NTargets and NTrasnporters are the total number of enzymes, targets and transporters associated

with each drug. The final scores were normalized to the maximum score obtained for each node type (drug/gene).

The drug–gene associations of drugs used for treating metabolic disorders were obtained from the DrugBank

database and the overlaps were plotted using Venn Diagrams [30]. The details of the drug categories and the

associations are listed in Supplementary Table 5. The inhibitor status for COVID-19 drugs were obtained by

overlapping the list of 89 drugs with the Flockhart table of drug–gene interactions [31]. The list of potential

DDIs for the CYP inhibitor drugs used in COVID-19 therapy were obtained using the drug–gene interactions in

the DrugBank database and clinical guideline annotations from PharmGKB.

Results

Drugs involved in COVID-19 therapy

In this study, we identified 89 drugs that are currently being used clinically or are undergoing clinical trials for

COVID-19 as listed in the PharmGKB [25] and DrugBank [26] databases (Table 1 & Supplementary Table 1). These

drugs are classified into four groups: anticytokine/anti-inflammatory (n = 30), inhibiting viral entry (n = 10),

inhibiting viral replication (n = 15) and others (n = 36). While ten drugs out of 89 have at least one high-confidence

PharmGKB clinical annotation (Level 1 and Level 2), 60 drugs have at least one associated pharmacogene listed by

the DrugBank database in the role of a metabolizing enzyme, target, transporter or carrier. A total of 27 out of 89

drugs do not have any pharmacogenetic information available as some of these are new/experimental drugs.

Clinically significant PharmGKB variants associated with COVID-19 treatment among Indians

Toward cataloging clinically relevant COVID-19-associated PGx variants predominant in the Indian population,

we obtained a total of 330 variant-drug clinical annotations that overlapped with our drug list in the PharmGKB

database. A total of 29 of these associations involve nine drugs and encompass 16 single nucleotide variants (SNVs)

and 14 haplotypes in 17 genes which have Level 1 and Level 2 evidence, and are considered clinically significant.

Comparative analysis of the allele frequencies of these variants among Indians and other global populations in-
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Figure 1. Allele frequencies of PharmGKB variants associated with COVID-19 drugs. Comparison of Indian allele

frequencies of clinically relevant PGx variants with populations in 1000 Genomes dataset, gnomAD database, GME

database and Qatar database. PGx variants in Indians which yielded significant p-value (p < 0.05) in the Fisher’s exact

test comparing Indian allele frequency with other databases are highlighted in green outer circle.

GME: Greater Middle East; PGx: Pharmacogenetic.

cluded in gnomAD [20], 1000 Genomes Project [19], GME [21] and Qatar [32] indicate remarkable inter-population

differences (Figure 1 & Supplementary Table 2). For example, the variant rs12979860 in gene IFNL3/IFNL4

showed up to threefold difference in prevalence ranging from 20% among Indians to 60% among African pop-

ulations. Similarly, the prevalence of the variant rs578776 in CHRNA3 gene is 26% among Ashkenazi Jewish

population compared with 77% among East Asians. Indian allele frequencies for every variant were found to be

significantly different (p < 0.05, Fisher’s test) from the global average represented by at least one among gnomAD

(gnomAD-ALL) and 1000 Genomes projects (1KGP3-ALL).

A total of 12 out of the 29 annotations involved antiviral drug ribavirin in association with four genes (IFNL3,

IFNL4, ITPA, VDR). Two of these variants, rs12979860 and rs8099917 in IFNL3 and IFNL4 genes with the

highest level of evidence (Level 1A/1B) have clinical guideline annotations issued by the Clinical Pharmacogenetics

Implementation Consortium [33]. As per the guideline, our analysis shows that 37% of the Indian population carry

at least one of the variants and are therefore unlikely to have a favorable response to ribavirin. Another variant

belonging to ITPA gene, rs1127354, shows twofold significantly higher prevalence among Indians compared with

others (IndiGen: 0.12, gnomAD-ALL: 0.06) and is associated with conferring protective effects against ribavirin-

induced hemolytic anemia in patients with chronic hepatitis C. This variant is also associated with the dosage of

ribavirin when accompanied by interferon alfa-2b. Similarly, the variant rs2228570 in VDR gene associated with

decreased response to treatment with peginterferon alfa-1b and ribavirin shows higher prevalence in Indians when

compared with the global populations (IndiGen: 0.74; gnomAD-ALL: 0.66).
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The variant rs4149056 in SLCO1B1 gene associated with increased plasma lopinavir concentrations shows lesser

prevalence among Indians when compared with frequencies that are twofold higher in the global population and

fourfold higher in Qataris (IndiGen: 0.05; gnomAD-ALL:0.12; QATAR: 0.24). Similarly, eight out of 29 annota-

tions were associated with nicotine involving five genes (UGT2B10, CHRNA3, CHRNA5, CHRNB2 and COMT).

One of these variants rs578776 in CHRNA3 gene associated with toxicity and metabolism of nicotine shows higher

prevalence among Indians when compared with global average frequencies (IndiGen: 0.5122; gnomAD-ALL:

0.3939) with varied prevalence among other subpopulations. We also observed that two haplotypes CYP2A6*7

and CYP2A6*19 that are associated with decreased metabolism of nicotine are sparsely present in India (IndiGen:

0.0087, 0.0082) while it could not be detected in the 1000 Genomes populations.

In concordance with the global prevalence, UGT1A1*28 haplotype that is associated with increased risk for

hyperbilirubinemia in case of joint administration of atazanavir and ritonavir drugs in HIV patients was found

to be present at a high allele frequency of 40% among Indians (IndiGen: 0.40; gnomAD-ALL: 0.39). In case of

haplotypes CYP2C9 *2 and *3 which are associated with decreased metabolism of ibuprofen, the Indian allele

frequencies for the former is lower (IndiGen: 0.0306; 1KGP3-ALL: 0.0584) while the latter is higher (IndiGen:

0.11; 1KGP3-ALL: 0.06) in comparison with global averages.

CYP2D6*10 haplotype has a lower allele frequency of 7% in Indians compared with the global average (1KGP3-

ALL: 0.1759) and is associated with increased plasma concentration of antidepressant drug, fluvoxamine with

increased risk of developing gastrointestinal side effects. Similarly, CYP2D6*4 allele that is associated with the

decreased clearance of fluvoxamine drug has a higher allele frequency of 9% in Indians compared with the global

population (1KGP3-ALL: 0.006).

Potentially deleterious PGx variants associated with COVID-19 therapy among Indians

In an attempt to identify a comprehensive set of hitherto unknown population-specific COVID-19 associated PGx

variants in the Indian population, we performed a systematic survey of potential functional disruption in genes

associated with COVID-19 drugs as per DrugBank database. A total of 222 genes were found to be associated with

60 drugs involved in the role of enzymes, targets, transporters or carriers. Consensus functional predictions based on

SIFT [22], Polyphen-2 [23] and MutationTaster [24] tools identified 1386 potentially deleterious variants disrupting

the function of 211 genes associated with 43 COVID-19 drugs. A total of 73 of these variants are prevalent in the

Indian population at over 1% effect allele frequency (Figure 2 & Supplementary Table 3). The variant rs60140950

in SLCO1B3 transporter gene that has been previously associated with altered transporter expression of associated

statins [34], is prevalent in 5% of the Indian population (IndiGen: 0.053; gnomAD-ALL: 0.10). Variants in the gene

NR3C1 are associated with methylprednisolone potency [35]. We report a potentially deleterious variant rs6190

in the same gene with 2% allele frequency in the Indian population (IndiGen: 0.02; gnomAD-ALL: 0.02). Our

analysis also highlighted a drug resistance-associated variant in ABCC4 gene [35,36], rs11568658, that potentially

affects response to two COVID-19 drugs ibuprofen and remdesivir whose prevalence is twice higher in Indians in

comparison to the global population (IndiGen: 0.078; gnomAD-ALL: 0.03).

Drug pathways disrupted in the Indian population

Toward deriving pathway level insights into the key pharmacokinetic/pharmacodynamic functions associated with

response to COVID-19 therapy that are frequently disrupted in the Indian population, we performed a drug

pathway analysis focused on 60 drugs associated with 52 genes that are disrupted in at least 1% of the population

(Figure 3). The results are presented as a Sankey flow chart allowing one to visualize the individual drug–gene

relationships organized into multiple levels/columns based on the gene functions (transporter, enzyme, target)

along with information regarding the extent of overall drug functional loss. The analysis reveals that six drugs,

icatibant, naproxen, remdesivir, tranexamic acid, dapagliflozin and metenkefalin showed at least 50% disruption

of its overall function via impaired transport, target or metabolism. We also observed that three drugs, tranexamic

acid, heparin and metenkefalin have complete disruption of at least one of their individual functions, namely

enzymes, transport or targets.

Remdesivir, which is studied in 12 clinical trials for COVID-19 treatment has half of the genes involved

in its metabolism and transport disrupted in at least 1% of the Indian population. Hydroxychloroquine, used

widely in the treatment of COVID-19 may have altered metabolism and transport function among Indians,

as three of its associated genes namely CYP2D6, CYP2C8 and SLCO1A2 are commonly (over 10, 1 and 1%,

respectively) impaired in the population. This drug is also reported to have adverse effects such as hemolytic
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Figure 2. Allele frequencies of most common potentially deleterious nonsynonymous variants in Indians involved

in COVID-19 drug transport, metabolism and targeting. Allele frequencies are compared with 1000 genomes

database, gnomAD database, GME database and Qatar database. The y-axis represents the variant [Gene Name] and

the x-axis represents the population and subpopulation. Gene function category is color coded on the left with the

number of drugs associated with each gene.

GME: Greater Middle East.

anemia, cardiomyopathy, neutropenia, gastrointestinal disturbances, retinopathy, rash and QT prolongation [3].

Metenkefalin, an investigational endogenous opioid being studied for treatment of COVID-19 is found to have

66% of function disruption as its sole metabolizing enzyme CPA6 along with one out of its two target genes

(OPRM1) has a potentially deleterious variant rs1799971 with an allele frequency of 40% in Indians, which is

known to affect the metabolism of other opioids [3,37].

DDIs in COVID-19 therapy

Toward demonstrating the pharmacogenetic basis for DDIs triggered by polypharmacy during COVID-19 therapy,

we performed a network analysis involving COVID-19 drugs and their shared drug targets, metabolizing enzymes

and transporters/carriers. Our analysis showed that CYP3A4, followed by CYP2C9, CYP1A2 and CYP2C8 were

the most shared enzymes associated with a total of 77 COVID-19 drugs suggesting potential risk for interactions if

the related drugs are co-administered (Figure 4A & Supplementary Table 4). An overlap with the Flockhart table of

CYP–drug interactions [31] indicates that three COVID-19 drugs, fluoxetine, ritonavir and fluvoxamine act as strong

inhibitors of CYP2D6, CYP3A4/5/7 and CYP1A2 respectively (Figure 4B). These inhibitor drugs can therefore

future science group www.futuremedicine.com 611



Research Article Sahana, Sivadas, Mangla et al.

Anti-cytokine/anti-
inflammatory

Inhibit viral
entry

Inhibit viral
replication

Others

Drug category

Transporters Enzymes Targets

OPRM1

NR3C1

CHRNB3

CHRNA10

CHRNA9

CHRNA5

CHRNA3

CHRNA7

DHODH
DRD2
GRIN3A
NOS2

AR

PPARA

NA

ANPEP

NIL

FCGR2A

SERPINC1

FGFR2

MT1A

S1PR3

NA

NIL

NA: Not affected

NIL: No known genes

Figure 3. Drug pathway map representing the pharmacogenes functionally disrupted in the Indian population. The

first column represents the broad drug category associated with the potentially deleterious variants in the Indian

population. The second, third and fourth columns represent the pharmacogenes belonging to the classes:

transporter/carriers, enzymes and targets respectively. The line width represents the degree of functional loss of the

given drug in terms of the pharmacogenes classes.

compete with other substrate drugs for the associated enzyme (CYP2D6 [n = 10], CYP3A4 [n = 30], CYP3A5 [n = 9],

CYP3A7 [n = 4] and CYP1A2 [n = 13]) and cause >fivefold increase in their plasma area under the curve (AUC)

values or more than 80% decrease in their clearance. In the case of transporters, ABCB1 was identified as one of

the most shared transporters that has been associated with 16 drugs in our list. Association of azithromycin with

common ABCB1 variants, rs2032582 (IndiGen: Not Available, 1KGP3-SAS: 0.36) and rs1045642 (IndiGen: 0.40)

have been reported earlier causing up to twofold differences in peak azithromycin levels [38]. This is particularly

concerning for a QT-prolonging agent as it may further increase the risks for cardiac toxicity when combined

with similar drugs such as hydroxychloroquine/chloroquine during COVID-19 therapy [38,39]. Our analysis also

highlighted that drugs such as isotretinoin, azithromycin, baricitinib, tofacitinib, apremilast and fluvoxamine have

increased likelihood for DDIs by virtue of the proportion of shared PGx genes associated with them.

The mounting evidence for increased risk of severe COVID-19 infection among patients with comorbidities

mostly involving metabolic disorders also prompted us to compare the shared pharmacogenes between our list

of COVID-19 drugs and the widely prescribed antidiabetics, lipid lowering agents, anticoagulants, antiplatelets,

fibrinolytics and antihypertensives (Supplementary Table 5). Overall, 19 genes, primarily enzymes and transporters,

were found to be shared by all the drug categories. Our results also highlight that 45% of genes associated with

lipid lowering agents, 34% of antihypertensives associated genes, 49% of genes associated with anticoagulant,

antiplatelet and fibrinolytic and 59% of antidiabetics were found to be shared with COVID-19 drugs (Figure 4C).

The knowledge of key CYP inhibitors among COVID-19 drugs also allowed us to compile a candidate list of

potential DDIs by identifying drugs that are solely metabolized by the relevant enzymes or have clinical guideline

annotations in PharmGKB (Table 2). The former approach identified a total of 36 drugs including 15 COVID-19
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Figure 4. Pharmacogenetic of predicted drug–drug interactions and drug–drug–gene interactions in COVID-19 therapy. (A) A network

representation of the drug–gene interactions involved in COVID-19 therapy. The drugs and gene labels are highlighted in blue and pink

colours, respectively. The label sizes of the genes are proportional to the number of drug connections while that of the drugs are

proportional to the proportion of shared PGx genes associated with each drug (See Methods for details). (B) A Venn diagram

representing the overlap of genes associated with COVID-19 therapy and treatment of metabolic disorders. (C) A list of COVID-19 drugs

showing their inhibitor status for the major CYP enzymes as per the Flockhart table of drug–gene interactions.

PGx: Pharmacogenetic.

drugs, five antidiabetics, 13 antihypertensives, two lipid lowering agents and two cardiac drugs that can cause

potential DDIs involving the four inhibitor drugs (fluvoxamine, ritonavir, fluoxetine and disulfiram) described

earlier (Figure 4B). The latter approach helped us highlight an additional 80 drugs across diverse drug categories

that may require careful monitoring when used with the associated COVID-19 drug as per the PharmGKB

guidelines (Supplementary Table 5).

It is known that genetic polymorphisms can influence the magnitude of DDIs. For example, the inhibitory effect

of fluvoxamine (CYP1A2/2C9/2C19/3A457 inhibitor) on the biotransformation of chloroguanide (CYP2C19

substrate) is greater in normal CYP2C19 metabolizers compared with poor metabolizers [40]. DDIs involving drugs

that use multiple biotransformation pathways can also be additionally influenced by genetic polymorphisms in the

associated enzymes [40,41]. For example, Bahar et al. showed that co-administration of CYP3A4 inhibitor, ritonavir

with antifungal agent voriconazole (a substrate of CYP3A4 and CYP2C19) caused 54% increase in plasma AUC

levels in normal CYP2C19 metabolizers while it caused 807% increase in CYP2C19 poor metabolizers [42]. Similar

gene-dependent effects were reported for fluvoxamine when used with gastric proton pump inhibitor, lansoprazole

where normal and intermediate CYP2C19 metabolizers showed major interactions (normal metabolizer [NM]:

283% increase in AUC and intermediate metabolizer [IM]: 150% increase in AUC) compared with minimal

effect in case of poor metabolizers (4% increase in AUC) [42]. These results are particularly significant for specific

populations like India with substantial prevalence of CYP2C19 variants (*2: 0.03 and *3: 0.1).
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Discussion

The current study has systematically identified and cataloged the prevalence of 30 clinically significant PGx variations

along with 73 predicted deleterious PGx variants associated with response to COVID-19 therapy in the Indian

population. Remarkable population-scale allele frequency differences were observed for most variants justifying

the need for formulating country-level policies for the use of COVID-19 therapies in distinct populations. The

availability of population-scale Indian whole genomes provided us a unique opportunity to provide a comprehensive

summary of the clinically significant CYP star alleles in addition to other rare and common SNVs in the population.

Analysis of Indian allele frequencies for clinically actionable PGx variants suggest that a third of Indian COVID-

19 patients are likely to respond less favorably to peginterferon alpha and ribavirin combination therapy, that

is being adopted especially to treat COVID-19-associated severe pneumonia [43]. Carriers of rs12979860 and

rs8099917 variants have increased likelihood for lower sustained virological response rate during treatment with

peginterferon alpha and ribavirin in chronic hepatitis C and B patients [43,44]. We also show that a large majority of

Indian patients are at an increased risk of ribavirin-induced anemia as only 22 and 4% of the population carry the

protective variants, rs1127354 and rs7270101, respectively, in the ITPA gene. The inability to tolerate higher doses

of ribavirin in such patients may further reduce their chances of attaining sustained virological response. Another

key actionable PGx finding for treating Indian COVID-19 patients relates to the antidepressant drug, fluvoxamine,

which is being repurposed for treating the cytokine storm associated with COVID-19 [45]. We observed that 2.2%

of Indians are CYP2D6 poor metabolizers who are recommended 25–50% reduced dosage of fluvoxamine or an

alternate CYP2D6-independent drug to reduce possible adverse reactions [46].

The pharmacokinetic/dynamic investigations also helped us prioritize a list of drug candidates for potential DDIs

in COVID-19 therapy. The concomitant use of strong CYP inhibitors identified in this study with the associated

substrate drugs should be carefully monitored. For example, drugs such as interferon alfa-2b (recombinant),

famotidine and human interferon beta which utilize CYP1A2 as their sole metabolizing enzyme are more likely

to show altered exposure when administered with CYP1A2 inhibitor, fluvoxamine. Similarly, regimens containing

CYP3A4/5/7 inhibitor ritonavir could elicit an impaired response to a large set of exclusively CYP3A4/5/7-

metabolized drugs such as ruxolitinib, acalabrutinib, baricitinib, azithromycin, tocilizumab, sarilumab, siltuximab

and isotretinoin.

Given the increased risk posed by polypharmacy in severe COVID-19 patients with metabolic disorders, our

predicted list of potential DDIs associated with metabolic disorder therapy also warrants systematic clinical moni-

toring and validation studies. For example, the effect of fluvoxamine on elevated risk of over-anticoagulation during

acenocoumarol maintenance treatment has already been reported [46,47]. Similarly, the use of strong CYP3A4/5/7

inhibitors ritonavir and/or fluvoxamine with saxagliptin or linagliptin in diabetes patients is also expected to

cause altered exposure thereby requiring dose adjustments [46–48]. In addition, PGx studies of DDIs and DDGIs

suggest that the strength of these predicted interactions could be altered to a great extent based on the patient’s

metabolizer status (rapid/normal/intermediate/poor) for the affected as well as alternate enzymes. Accordingly, a

large proportion of Indian patients are likely to show varied response to CYP2C19-mediated DDGIs given the high

cumulative prevalence of CYP2C19 *2 (AF: 36%) and *3 (AF: 0.6%) variants.

Conclusion

The current study has performed a comprehensive assessment of known and predicted pharmacogenetic variants,

DDIs and DDGIs associated with COVID-19 therapy in the Indian population. We highlight the most clinically

significant associations along with predicted associations and interactions that can be prioritized for clinical

monitoring and validation. Given the inexorable spread of the pandemic in the Indian subcontinent, the insights

from the current study can be utilized toward planning large-scale nation-level COVID-19 clinical trials toward

ensuring improved therapeutic outcomes by maximizing the efficacy and safety of treatment regimens.

Future perspective

As routine and individual PGx testing is not feasible in current clinical settings, a population scale PGx analysis

for specific therapies would be of utmost clinical significance. This becomes even more important in pandemics

like COVID-19 where the illness is acute and hence individual pharmacogenetic testing and its implications

remain a large limitation. With widely available population genome datasets, an extensive PGx analysis can help

in expediting decision making for choice of empirical therapies on a population scale for various diseases, for

better clinical outcomes with minimal adverse effects. Similar analysis on population datasets can provide further
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understanding of current therapy structures for COVID-19, combination therapies and post COVID-19 therapy

evaluation of efficacy and adverse effects.

Summary points

Background

• Numerous experimental and repurposed drugs are undergoing clinical trials or are being widely prescribed for

COVID-19 treatment without adequate direct evidence for its safety/efficacy in patients across diverse ethnic

populations.

• The recently launched population-scale whole genome sequencing of Indian genomes (IndiGen project) provides

a unique opportunity to explore the landscape of pharmacogenetic (PGx) variants associated with differential

COVID-19 response among Indians which is currently one of the worst affected countries in the world.

Identification of clinically significant & predicted deleterious PGx variants among Indians

• We identified 30 clinically significant PGx variations along with 73 predicted deleterious PGx variants associated

with pharmacological response to COVID-19 therapies in the Indian population.

• Our analysis shows that a large majority of Indian patients are at an increased risk of ribavirin-induced anemia as

only 22 and 4% of the population carry the protective variants.

• A total of 2.2% of Indians are CYP2D6 poor metabolizers who are recommended 25–50% reduced dosage of

fluvoxamine or an alternate CYP2D6-independent drug to reduce possible adverse reactions.

Drug–drug & drug–drug–gene interactions analysis

• CYP3A4, CYP2C9, CYP1A2, CYP2C8, ABCB1 and ALB were identified as the most shared PGx genes in COVID-19

therapy.

• A total of 15 therapeutics used in the treatment of COVID-19 were predicted as likely candidates for potential

drug–drug interactions (DDIs) with four CYP inhibitor drugs, fluvoxamine, ritonavir, fluoxetine and disulfiram.

• Our results also highlight the high prevalence of CYP2C19 alleles that are potentially associated with differential

DDIs and drug–drug–gene interactions in COVID-19 therapy.

Conclusion

• This is the first comprehensive study of PGx associations, DDIs and drug–drug–gene interactions associated with

therapeutics used in COVID-19 in the Indian population providing timely and useful insights for clinical decisions

and monitoring as well as for planning validation studies.
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