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Abstract—Biometric fusion consolidates the output of multiple
biometric classifiers to render a decision about the identity of an
individual. We consider the problem of designing a fusion scheme
when 1) the number of training samples is limited, thereby af-
fecting the use of a purely density-based scheme and the likelihood
ratio test statistic; 2) the output of multiple matchers yields con-
flicting results; and 3) the use of a single fusion rule may not be
practical due to the diversity of scenarios encountered in the probe
dataset. To address these issues, a dynamic reconciliation scheme
for fusion rule selection is proposed. In this regard, the contribu-
tion of this paper is two-fold: 1) the design of a sequential fusion
technique that uses the likelihood ratio test-statistic in conjunction
with a support vector machine classifier to account for errors in
the former; and 2) the design of a dynamic selection algorithm that
unifies the constituent classifiers and fusion schemes in order to op-
timize both verification accuracy and computational cost. The case
study in multiclassifier face recognition suggests that the proposed
algorithm can address the issues listed above. Indeed, it is observed
that the proposed method performs well even in the presence of
confounding covariate factors thereby indicating its potential for
large-scale face recognition.

Index Terms—Biometrics, face verification, match score fusion,
support vector machine (SVM).

I. INTRODUCTION

T
HE paradigm of information fusion, which entails the

consolidation of evidence presented by multiple sources,

has been successfully used to enhance the recognition accuracy

of biometric systems. The use of multiple pieces of evidence in

order to deduce or verify human identity is often referred to as

multibiometrics. While biometric fusion can be accomplished

at several different levels in a biometric system [18]—viz.,

data-level, feature-level, score-level, rank-level, and deci-

sion-level—fusion at the match score level has been extensively

studied in the literature. Fusion at the match score level involves
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combining the match scores generated by multiple classifiers

(or matchers) in order to render a decision about the identity

of the subject. There are different schemes for performing

score level fusion based on different models. These include

density-based fusion schemes where the model is based on

estimating density functions for the genuine and impostor score

distributions; transformation-based fusion schemes where the

model is based on estimating normalization functions; and

classifier-based fusion schemes where the model is a classifier.

While match score fusion has been demonstrated to be effec-

tive [18], [22], its matching performance is compromised under

several scenarios.

1) Density-based score fusion schemes [18] which use the

likelihood ratio test to formulate the fusion rule can be af-

fected by the use of incorrect density functions for the gen-

uine and impostor scores. The use of parametric methods of

density estimation can be based on the assumption of incor-

rect models (e.g., Gaussian densities for both genuine and

impostor scores) that can lead to suboptimal fusion rules;

the use of nonparametric methods, on the other hand, is

affected by the availability of a small number of training

samples (especially genuine scores) thereby impacting the

feasibility of designing an effective fusion rule.

2) Classifier-based fusion schemes [2] are susceptible to over-

training on one hand and classifier bias on the other [4],

[27]. Further, a pure data-driven approach will not be able

to accommodate scenarios that are not represented in the

training data. For example, when conflicting scores from

multiple matchers are presented to the fusion classifier,

then, in the absence of sufficient training samples repre-

senting such a scenario, an incorrect decision may be reg-

ularly rendered.

Training and using a single fusion rule—whether it be the

simple sum rule or the likelihood ratio-based fusion rule—on

the entire probe dataset may not be appropriate for the rea-

sons stated above. Further, component classifiers can render

conflicting decisions that can impact the performance of fu-

sion schemes such as the simple sum rule. To address these is-

sues and, subsequently, improve the verification performance of

a biometric system, we propose a sequential fusion algorithm

which combines a density-based fusion scheme with a classi-

fier-based scheme. The first contribution lies in using a sup-

port vector machine (SVM) classifier in conjunction with the

likelihood ratio test statistic. The likelihood ratio aspect of the

algorithm helps in modeling the underlying class distribution

using simple Gaussian mixture models; the statistical and geo-

metrical properties of SVM [14], [15], [23] ensures that there is
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Fig. 1. Block diagram illustrating the steps involved in the proposed sequential match score fusion algorithm.

a “correction” of the decision rendered by the likelihood ratio

test statistic. By employing a simple model to characterize the

genuine and impostor density functions, the requirement for a

large number of training samples is avoided.

The sequential nature of the proposed fusion algorithm makes

it computationally expensive. The fusion algorithm may not be

required if the probe image is of high quality and exhibits suf-

ficient biometric information useful for recognition using only

one biometric classifier. Further, simple fusion rules such as sum

rule with minimum/maximum (min/max) normalization can be

used for most of the probe cases when multiclassifier biometric

output is not highly conflicting. One way to improve the ver-

ification accuracy, without increasing the computational cost,

is to develop a context switching scheme that dynamically se-

lects the most appropriate classifier or fusion algorithm for the

given probe. The second contribution of this work is the design

of an algorithm for the dynamic selection of constituent uni-

modal biometric classifiers or match score fusion algorithms

that not only improves the verification accuracy but also de-

creases the computational cost of the system. In a two-class,

biclassifier biometric system, the dynamic selection algorithm

uses quality information (not based on match scores) to select

one of four options: 1) first biometric classifier only, 2) second

biometric classifier only, 3) sum rule with min/max normaliza-

tion, and 4) sequential match score fusion. The selected option

is then used to render the final decision.

The performance of the proposed algorithm is evaluated in

the context of a face recognition application to mitigate the

effect of covariate factors such as pose, expression, illumi-

nation, and occlusion. Match scores computed from two face

recognition algorithms, namely local binary pattern (LBF) [3]

and neural network architecture-based 2-D log polar Gabor

transform (2DG-NN) [20], are fused and the verification

performance is compared with existing match score fusion

algorithms. Experiments indicate that the proposed fusion

architecture efficiently improves the verification performance

without increasing the computational cost.

II. PROPOSED SEQUENTIAL MATCH SCORE

FUSION ALGORITHM

Fig. 1 shows the steps involved in the proposed fusion al-

gorithm that consists of two steps: 1) match score fusion and

2) classification. First, the match scores are transformed into be-

lief assignments using density estimation schemes. In the next

step, a belief model is used for fusion and finally, the likeli-

hood ratio test statistic and SVM are used for classification.

Throughout the paper, we use to represent the first biometric

classifier and to represent the second biometric classifier.

A. Match Score Fusion

For a two class problem, let , where

represents the genuine class and represents the impostor

class. The first step in the sequential fusion algorithm is to trans-

form match scores into belief assignments. A multivariate den-

sity estimation technique is used to compute belief assignments

induced by the match scores because previous literature has

shown the usefulness of mixture models in biometrics [18]. The

multivariate Gaussian density function [7] can be written as

(1)

where is a vector with components, is the mean vector,

and is the covariance matrix. Let be the conditional

joint density of match scores and . is computed

using

(2)

where , , and are the mean vector, covari-

ance matrix, and weight factor, respectively, corresponding to

the th mixture component in the conditional joint density. Also,

and is the number of mixture com-

ponents used to model the density. A recursive algorithm [29]

is used to estimate the parameters of the mixture model.

Let be the match score vector, where

is the match score computed by the th biometric classifier or

matcher. To mitigate the effect of curse-of-dimensionality and

for faster computation, we assume independence among con-

stituent matchers and compute the marginal density

of the th classifier. The belief assignment for the th clas-

sifier is computed using

(3)

where is the verification accuracy prior of the th

classifier that is used as the ancillary information to estimate

the beliefs. With the help of (3), the belief assignments for

individual biometric classifiers are computed. For example,

in a two-class two-classifier biometric system, we compute

and .

The belief assignments of biometric classifiers are then fused

using the proportional conflict redistribution rule [6]. In this

rule, redistribution of the conflicts is performed only on those
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elements which are involved in each conflict and is done ac-

cording to the proportion/weight of each classifier. The belief

assignments of classifiers and are fused using

(4)

Here , , , and and are the belief model

weight factors . and denote the

belief assignments of classifier 1 and classifier 2, respec-

tively, computed using (3). is a vector with values
1 representing the fused belief.

In (4), the first term denotes the degree of conflict between the

classifiers and the formulation effectively combines the beliefs

of multiclassifier match scores.

B. Classification

First, the fused belief assignments induced from

match scores are converted into the likelihood ratio

. Next, the likelihood ratio

is used as input to the SVM classifier for decision making

as shown in (5). Utilizing the SVM with likelihood ratio for

decision-making ensures that the algorithm is less prone to

over-fitting and addresses the nonlinearity in the biometric

match scores

if

otherwise.
(5)

Here is the decision threshold chosen for a specific false accept

rate (using the concept of SVM regression). The advantage of

this approach is its control over the false accept and false reject

rates, and it also satisfies the Neyman–Pearson criteria [10] for

decision making.

III. DYNAMIC SELECTION OF CONSTITUENT BIOMETRIC

CLASSIFIERS AND FUSION ALGORITHMS

When encountering a good quality gallery-probe pair,2 an ef-

ficient classifier can verify the identity without the need for fu-

sion. For cases when the two biometric classifiers have minor

conflicts, the sum rule with min/max normalization [18] can ef-

fectively fuse the match scores and yield correct results with

much less time complexity. The sequential fusion rule is used

to perform fusion when individual classifiers are prone to gen-

erate conflicting or ambiguous decisions, i.e., cases involving

uncertainties. In our previous research, we introduced an adap-

tive framework that reconciles match score fusion algorithms

to improve the verification performance both in terms of accu-

racy and time [24]. The concept behind the framework is to

dynamically select an optimal fusion algorithm for the given

1� �� � � � �� �� �� � � � � �� �� �� ��
� �� ��� �� ��� � �� �� �� ��� �� ��� �� ��
� �� � � � �� �� �� � � � � �� �� �� ��
� �� � � � �� � � � � �� �� �� ��� �� � �
� �� � .

2The term gallery-probe pair is used to denote that, in the verification mode,
a probe is compared against a gallery.

probe image. In other words, the algorithm selects a complex fu-

sion algorithm only when there is uncertainty in the constituent

match scores; otherwise, it selects a simple fusion algorithm.

In this paper, we extend the framework to reconcile constituent

biometric classifiers (e.g., two face recognition algorithms in a

multiclassifier system) with the proposed sequential fusion al-

gorithm and the sum rule in order to optimize both verification

accuracy and computational time. Fig. 2 illustrates the steps in-

volved in the proposed dynamic selection algorithm. The algo-

rithm is explained in the context of face recognition but it can

be easily generalized to any multibiometric scenario.

Input to the dynamic selection algorithm is a quality vector

which is a quantitative representation of biometric information

pertaining to the gallery-probe pair. In the context of face recog-

nition, the quality vector consists of quality score, visual activity

level, and pose of the face image. The quality vector is

computed using the following approach.

• To encode the facial edge information and noise present

in the image, a redundant discrete wavelet transformation

(RDWT)-based quality assessment algorithm [25] is used

that provides both frequency and spatial information. A

face image of size is decomposed into three levels

of the RDWT, i.e., . Let repre-

sent the approximation, horizontal, vertical, and diagonal

subbands, respectively. The RDWT decomposition can be

written as

(6)

The image quality score is computed using (7).

(7)

where

(8)

and

(9)

Here, and are the mean and standard deviation of

the RDWT coefficients of the th subband and the th level,

respectively, and denotes the gradient operator. Finally,

the quality score is normalized in the range using

min/max normalization [18] (0 represents the worst quality

and 1 the best quality) and used as the first element in the

quality vector.

• Image properties such as brightness and contrast can be

encoded using the visual activity level which is computed
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Fig. 2. Dynamic selection of biometric classifiers and fusion algorithms in the context of a face recognition application.

Fig. 3. Illustrating examples of quality vector on images from the LFW database [9].

using (10), shown at the bottom of the page. Activity level

is then normalized in the range and used as the

second element in the quality vector. A higher activity level

represents properly illuminated and contrast normalized

image.

• In face recognition, pose variations can reduce the amount

of overlapping biometric features required for recognition.

Therefore, it is important to include the head position or

angle as a pose parameter in the quality vector. In this re-

search, a fast single view algorithm [13] is used for esti-

mating the pose of a face image. The output of the algo-

rithm is the pose angle which serves as the third element

in the quality vector.

Fig. 3 shows examples of the image quality vector on the

LFW face database [9]. In the dynamic selection algorithm, if

the quality of gallery-probe pair is high then the constituent clas-

sifiers are used; if not, the fusion rules are chosen. The proposed

algorithm uses three SVMs to select from the two classifiers

(10)
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Fig. 4. Illustrating the steps involved in match score fusion of a multiclassifier face recognition system.

and the two fusion algorithms. In this research, we use LBP [3]

and 2DG-NN [20] based face recognition algorithms as the con-

stituent classifiers, and the sum rule with min/max normaliza-

tion and the proposed sequential fusion as the two fusion algo-

rithms. As shown in Fig. 2, the first SVM, denoted as SVM , is

used to select between the classifiers and the fusion rules. If the

classifiers are selected, then the second SVM, denoted as SVM ,

is used to choose between LBP and 2DG-NN face recognition

algorithms. If the option pertaining to fusion rules is selected,

then the match scores from LBP and 2DG-NN are computed

and the third SVM, denoted as SVM , is used to select between

the sum rule and sequential fusion. The dynamic selection algo-

rithm is divided into two stages: training the SVMs and dynamic

selection of algorithms for every probe instance.

1) Training SVMs: Three SVMs are independently trained

using the labeled training database. The training procedure is

explained as follows.

a) SVM is trained using the labeled training data .

Here, is the quality vector belonging to the th training

gallery-probe pair, i.e., .

is the respective label such that is as-

signed when the gallery-probe pair is of high quality and

can be correctly matched using individual classifiers and

is assigned to the pair that requires match score fusion.

At the end of the training stage, a nonlinear decision hy-

perplane is learned that can select between the individual

classifiers and match score fusion.

b) SVM is trained using the labeled training data ,

where is the quality vector belonging to the th

training gallery-probe pair and . In this

case, indicates the gallery-probe pair that can be

matched using the LBP classifier and is assigned

to the data that requires matching using the 2DG-NN

classifier. A nonlinear decision hyperplane is learned that

can select either the LBP or the 2DG-NN.

c) SVM is trained using the labeled training data .

Here, is the th training data vector that contains

match scores and verification accuracy priors pertaining

to the two classifiers, and is the label such

that belongs to match scores that should be fused

using the sum rule with min/max normalization and

belongs to the match scores that should be fused using

the sequential fusion algorithm. The SVM is trained such

that an output of SVM indicates the use of the sum

rule and SVM indicates the use of the sequential

fusion algorithm.

2) Dynamic Selection of Algorithms: For probe verification,

the trained SVMs are used to dynamically select the most ap-

propriate algorithm depending on the quality vector.

a) The quality vectors pertaining to both the gallery and

probe images are provided as input to the trained SVMs.

The SVM classifier selects between using a single clas-

sifier and fusion.

b) Depending on the classification result of the SVM clas-

sifier, SVM and SVM are used to select one of the four

options: 1) LBP, 2) 2DG-NN, 3) sum rule with min/max

normalization, and 4) sequential fusion.

IV. REDUCING THE EFFECT OF COVARIATE FACTORS IN FACE

RECOGNITION USING MATCH SCORE FUSION

There are several global, local, nonlinear, appearance-based,

texture-based, and feature-based face recognition algorithms

[11], [26], [28]. These algorithms independently attempt to

reduce the effect of covariate factors such as expression, illu-

mination, pose, and occlusion on the recognition performance.

However, most of the existing algorithms are optimized to

mitigate the effect of specific covariates. For example, the

neural network architecture-based 2DG-NN algorithm [20] can

tolerate variations in expression, illumination, and occlusion

whereas local facial features can handle pose and expression

variations. It is our assertion that the performance of a face

recognition system can be greatly enhanced if information from

multiple algorithms is fused and a final decision is obtained

using the fused information. In this section, we use the sequen-

tial fusion and dynamic selection algorithms to fuse the match

scores computed from a nonlinear face recognition algorithm

and a local facial feature based algorithm to mitigate the effect

of covariate factors.

As shown in Fig. 4, two face classifiers ( and ) are used

for feature extraction and matching. The match scores com-

puted using these classifiers are combined using the proposed

sequential fusion and dynamic selection algorithms. First, the

face region from the input image is detected using the triangle-

based face detection algorithm [21]. The size of the detected

face image is normalized to 128 96. Next, the following algo-

rithms are used for feature extraction and matching.
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TABLE I
COMPOSITION OF THE HETEROGENEOUS FACE DATABASE OF 1194 SUBJECTS

• Neural Network Architecture-based 2-D Log Polar

Gabor Transform: The face image is transformed into

polar coordinates and phase features are extracted using

the neural network architecture-based 2DG-NN [20].

These features are matched using Hamming distance to

generate the match scores.

• Local Binary Pattern: The face image is divided into sev-

eral regions and weighted LBF features are extracted to

generate a feature vector [3]. Matching of two LBP fea-

ture vectors is performed using the weighted distance

measure.

A. Face Databases Used for Evaluation

To evaluate the performance on a large database with chal-

lenging intraclass variations, we combined images from mul-

tiple face databases to create a heterogeneous database of more

than 116 000 images pertaining to 1194 subjects. Table I lists

the databases used and the number of subjects selected from

the individual databases. The CMU-AMP database3 contains

images with large expression variations while the CMU-PIE

dataset [19] contains images with variations in pose, illumi-

nation, and facial expressions. The Equinox database4 has im-

ages captured under different illumination conditions with ac-

cessories and expressions. The AR face database [12] contains

face images with varying illumination and accessories, and the

FERET database [17] has face images with different variations

over a time interval of 3–4 years. The Notre Dame face data-

base [8] is comprised of images with different lighting and fa-

cial expressions over a period of one year. The Labeled Faces

in the Wild database [9] contains real-world images of celebri-

ties and popular individuals. This database contains images of

more than 1600 subjects from which we selected 294 subjects

that have at least 6 images. To the best of our knowledge, there

is no single database available in the public domain which en-

compasses such a wide range of intraclass variations. The im-

ages are partitioned into two nonoverlapping sets: 1) the training

dataset is used to train the individual classifiers (i.e., 2DG-NN,

LBP, SVM classifiers) and the fusion algorithms, and 2) the

gallery-probe dataset (the test set) is used to evaluate the per-

formance of the fusion algorithms. The training set comprises of

randomly selected five images of each subject (i.e., 5970 images

for training) and the remaining images (over 110 000) are used

as the test data to evaluate the verification performance of the al-

gorithms. Fig. 5 shows sample images in the training dataset and

3Available: http://amp.ece.cmu.edu/projects/FaceAuthentication/download.
htm

4Available: http://www.equinoxsensors.com/products/HID.html

Fig. 5. Illustrating the examples of nonoverlapping training and gallery-probe
datasets: (a) training images from the Equinox database; (b) gallery-probe im-
ages from the Equinox database; (c) training images from the Notre Dame data-
base; and (d) gallery-probe images from the Notre Dame database.

the gallery-probe dataset. This train-test partitioning is repeated

10 times (cross validation) and receiver operating characteris-

tics (ROC) curves are generated by computing the genuine ac-

cept rates (GARs) over these trials at different false accept rates

(FARs).

B. Performance Evaluation

The training data is first used to train the proposed fusion al-

gorithm and dynamic selection algorithm. For the sequential fu-

sion algorithm, verification accuracy priors, density estimation

parameters, belief model weights and , and SVM param-

eters are computed using the training data. Note that in sequen-

tial fusion algorithm training, we use the labeled training match

scores where labels are genuine and impostor. Unimodal clas-

sifier precision on the training dataset is used as the verification

accuracy prior. To compute other fusion parameters, we perform

experiments with all possible combinations of parameters, i.e.,

training or optimization of parameters is performed globally.

The values of parameters, including the SVM kernel parameter

( in RBF kernel5), that provide the best verification perfor-

mance on the training data are chosen for testing. Similarly, the

5RBF parameter � � � results in the best performance.
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Fig. 6. ROC curves of the constituent face matchers, the proposed sequential
fusion scheme, the dynamic selection algorithm, and some existing fusion algo-
rithms.

dynamic selection algorithm is trained using the labeled data as

described in Section III. The training set is also used to train the

LBP and 2DG-NN face recognition algorithms. Further, the per-

formance of the sequential fusion algorithm is compared against

the sum rule with min/max normalization [18], SVM fusion [2],

and product-of-likelihood-ratio (PLR) fusion [16] with recur-

sive algorithm for density estimation [29].

The ROC plot in Fig. 6 shows comparative results of the LBP

and 2DG-NN face verification algorithms, and the improvement

due to match score fusion algorithms. The 2DG-NN classifier

yields around 82% verification accuracy at 0.01% FAR and out-

performs the LBP classifier by around 9%. The performance of

face verification improves by 5% to 13% when match scores

are fused using the fusion algorithms. Among all the fusion al-

gorithms, the proposed sequential fusion approach yields an ac-

curacy of 94.36% and the dynamic selection algorithm yields

the best verification accuracy of 94.98%.

Experiments are also performed to evaluate the effect of co-

variate factors (viz., expression, illumination, pose, and occlu-

sion) on the performance of face verification. This experiment

facilitates the comparative analysis of face verification algo-

rithms and the subsequent improvement by deploying the pro-

posed match score fusion technique. The results and their anal-

ysis are summarized as follows:

• The scatter plot in Fig. 7 and experimental results show

that the match scores obtained from the 2DG-NN and LBP

algorithms can be fused to significantly improve the ver-

ification accuracy. Further, covariate analysis in Table II

suggests that the 2DG-NN algorithm provides good per-

formance inspite of variations in expression, illumination,

and occlusion whereas the LBP algorithm can better tol-

erate variations in expression and pose. Covariate analysis

also indicates that variations in pose and occlusion cause

a larger reduction in verification accuracy compared to ex-

pression and illumination variations.

• In our experiments, we observed that the sum rule with

min/max normalization is not able to handle most of the

conflicting cases which are caused due to intrapersonal

Fig. 7. Scatter plot shows that there is limited correlation between match scores
obtained from LBP and 2DG-NN face recognition algorithms. Thus, score level
fusion is expected to improve the matching performance.

variations. Furthermore, during cross validation trials, we

observed that the difference between minimum and max-

imum half total error rates

[5] for the sum rule is very large (Table III). This shows

that the sum rule with min/max normalization is not able

to handle disparities in the training-testing datasets.

• Tables II and III suggest that the PLR fusion yields better

performance compared to SVM fusion both in terms of ac-

curacy and stability across different cross validation trials.

We also observed that the PLR fusion has the advantage

of generalization whereas the SVM fusion algorithm can

handle the nonlinearities in the match score.

• The sequential fusion algorithm effectively improves the

verification accuracy. The algorithm transforms the match

scores into probabilistic entities. Multiclassifier match

score fusion is performed using the proportional conflict

redistribution rule that can handle uncertainties in the bio-

metric match scores. Finally, a decision is made using the

likelihood-ratio-based SVM classifier. Further, the -test

at 95% confidence suggests that the sequential fusion

algorithm is significantly different than the other fusion

algorithms. The HTER test also shows that the sequential

fusion is stable across all cross validation trials.

• If the classifiers are in agreement (for example, Fig. 8(a)

shows a case when both LBP and 2DG-NN accept the sub-

ject), all the fusion rules provide correct results. Further,

Fig. 8(b) and (c) shows sample cases when the two classi-

fiers are in conflict but the proposed sequential fusion algo-

rithm correctly accepts the subjects while the other fusion

algorithms (sum rule, SVM fusion, and PLR fusion) pro-

vide incorrect results. Finally, there are few cases [sample

shown in Fig. 8(d)] when both the classifiers reject a gen-

uine subject. In such cases, the fusion algorithms cannot do

much to improve the performance and, therefore, a 100%

accuracy is not achieved.

• The time complexity of the proposed fusion approach is

also reasonable when compared with existing fusion al-

gorithms. On a 2-GHz Pentium Duo Core processor with
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TABLE II
COVARIATE ANALYSIS OF FACE RECOGNITION ALGORITHMS AND MATCH SCORE FUSION ALGORITHMS

TABLE III
COMPARISON OF FUSION ALGORITHMS IN TERMS OF COMPUTATION

TIME AND HTER

2-GB RAM in a MATLAB environment, the proposed al-

gorithm requires around 3.6 s for facial feature extraction,

matching, fusion, and decision-making, whereas existing

fusion algorithms require 1.7 to 2.8 s.

• The dynamic selection algorithm that unifies the LBP and

2DG-NN recognition algorithms, sum rule, and sequential

match score fusion algorithm yields the best verification

accuracy. Although the -test at 95% confidence suggests

that the dynamic selection algorithm is not significantly

different from the sequential fusion scheme, the advantage

of the former is computational time and stability (HTER

test). As shown in Tables II and III, the computational cost

of the dynamic selection algorithm is similar to that of the

sum rule but it provides a relative performance gain of more

than 60%.

• For cases in which the quality of the gallery-probe pairs

are good and pose variation is minimum, the 2DG-NN al-

gorithm is selected. The LBP technique is selected when

images are of good quality and have pose variations. The

fusion rules are selected when image quality is poor to

moderate, gallery-probe pairs have large variations in pose,

or facial features are occluded using cap/hat, scarf, and

glasses. Further, the sum rule is chosen when intrapersonal

variations are minimal and match scores exhibit minor con-

flicts. On the other hand, the sequential fusion algorithm

is selected for cases with large intrapersonal variations. In

the experiments, we observed that when the quality is good

( and ) and the difference in gallery-probe

pose angles is small , then both the classifiers are in

agreement 98% of the time. Overall, we found that around

38% of the time, LBP or 2DG-NN algorithms are chosen;

44% of the time, sum rule with min/max normalization is

selected; and 18% of the time, the sequential fusion algo-

rithm is selected.

Fig. 8. Sample cases from the labeled faces in the wild database [9] when the
LBP and 2DG-NN face verification algorithms are (a) in agreement to accept a
genuine subject; (b) and (c) in conflict; and (d) in agreement to reject a genuine
subject.

V. CONCLUSION

The performance of score-level fusion algorithms is often

affected by conflicting decisions generated by the constituent

matchers/classifiers for the same individual. Further, the compu-

tational cost of fusion algorithms that address conflicting scores

increases drastically. This paper presents algorithms to optimize

both verification accuracy and computation time. We first pro-

posed a sequential fusion algorithm by incorporating the likeli-

hood ratio test statistic in an SVM framework in order to clas-

sify match scores originating from multiple matchers. The pro-



478 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 3, SEPTEMBER 2010

posed fusion algorithm takes into account the precision and un-

certainties of individual matchers. We also presented a dynamic

selection algorithm that unifies the constituent classifiers with

the fusion schemes in order to optimize recognition accuracy

and computation time. Depending on the quality of the input

biometric data, the proposed algorithm dynamically selects be-

tween various classifiers and fusion rules to recognize an indi-

vidual. The resulting algorithms are used to mitigate the effect

of covariate factors in face recognition by combining the match

scores obtained from two face recognition algorithms. Experi-

mental results on a heterogeneous face database of 1194 sub-

jects suggest that the proposed algorithms can significantly im-

prove the verification performance of a face recognition system

with low computational overhead. In the future, we plan to ex-

tend the sequential fusion algorithm to include other parameters

in the face quality assessment algorithm [1]. The sequential fu-

sion and dynamic selection algorithms can also be extended to

other multimodal scenarios involving face, fingerprint, and iris

matchers.
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