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Abstract 

This paper describes a step forward in calculating the nonlinear frequencies and resultant dynamic behavior of high speed 

rotor bearing system with mass unbalance. Nonlinear strongly coupled equations of motion has been formulated based on 

strain energy and kinetic energy equations for shaft, disk and unbalance mass with shaft undergoing large bending 

deformations. Here gyroscopic effects of disk as well as mass unbalance are also considered while vibration effect along the 

shaft axis is ignored. Time history and FFT analysis for finding the fundamental frequencies for the rotating are portrayed 

under variation of shaft diameter, frequency of the shaft speed, geometric nonlinearity and disk location. The present research 

shows an interesting development that the initial conditions are playing an important role in finding the nonlinear frequencies 

and this variation is strongly due to the presence of nonlinear geometric coupling. In addition, response analysis of the system 

has been developed due to mass unbalanced using time history. This paper enables an understanding and realization of 

operating zones of rotational speed of the shaft  by which the excessive vibration can easily be avoided due to the resonant 

conditions occurred as the natural frequencies come closer to the frequency of the rotational speed. 
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1. Introduction  

Rotor dynamics being appealing subset of vibration due to its varied applications as well as vast opportunities 

to explore the subject in multiple dimensions. Rotating machines exist in many high end engineering applications 

such as jet engines, helicopter rotors, turbines, compressors and the spindles of machine tools as well as routine 

applications such as pump, fan, blower, IC engine etc. which makes rotor dynamics an important field of study. 

Kinetic energy always exist in forms the internal energy of the system because of connection to the driving 
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system. Hence, the rotating elements possess enormous amount of operating energy which can be converted into 

vibrations due to which the prediction and analysis of the rotor system becomes essential.  

Mass unbalance is very commonly observed in industrial application due to reasons such as material 

characteristic, machine design, non-uniform wear or corrosion, sticking of external particles etc. As the speed of 

rotation increases the impact of mass unbalance increases significantly and if not predicted and controlled may 

result in catastrophic failure occurs thus disrupting the smooth functioning of the same. Dynamics of rotating 

shafts is therefore necessary for an accurate design. Free vibration analysis is one of the vital steps for analysis in 

rotor dynamics. Over years, research on rotor dynamics is being carried on. For the instances, the effect of shear 

deformation and rotary inertia of a rotor on its critical speeds was studied by R. Grybos [1]. Choi et al [2] 

displayed the consistent derivation of a set of governing differential equations describing the flexural and the 

torsional vibrations of a rotating shaft where a constant compressive axial load was acted on it. Using the beam 

and shell theory, Singh and Gupta [3] investigated free damped flexural vibrations analysis of composite 

cylindrical tubes.  Almasi [6] developed a model considering large deformations of a rotor based on virtual work 

theory. Chang and Cheng [7] studied the instability and nonlinear dynamics of a slender.  Villa et al. [8] used 

invariant manifold approach to numerically investigate the responses of a nonlinear rotor-bearing system. 

Shabaneh and Zu [9] investigated the dynamic analysis of a single-rotor shaft system with nonlinear elastic 

bearings at the ends mounted on visco-elastic suspension.  

In general linear analysis is done as it is easy. But there demand for more accurate and refined solution, 

consideration of nonlinearities has become important and that result into tedious process. Nonlinearities in the 

rotating system can be in the form of higher order large deformations in bending, geometric and inertial 

nonlinearities, gyroscopic effect, etc. A better result can be obtained considering the nonlinearities mentioned. 

Hosseni and Khadem [4] analyzed the free and forced vibration of nonlinear rotor-bearing systems by means of 

multiple scales method.  Rizwan et al. [5] derived the mathematical modeling and investigated that nonlinear 

phenomenon of nonlinear rotor dynamics due to higher order deformations in bending considering geometric 

nonlinearity and gyroscopic effect.  

2. Mathematical Modeling And Approaches 

The geometry of the rotor system considered for this work has been shown in Fig.1 where the shaft, 

considered being a beam of circular cross section of length L and radius 
s

R  has been modeled by its kinetic and 

strain energies.  

.   

 

Figure 1: Rotor System with shaft and disk 
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The disk of external radius 
d

R  positioned at a distance / 3
d

L L , has been considered to be rigid and hence only 

requires kinetic energy for its characterization. The mass unbalance denoted by mu has been located at a distance 

d from the geometric center of the shaft. The concept of Euler-Bernoulli beam theory has been used to derive the 

governing equations of motion which describes the dynamic characteristics of rotor bearing combinations.  

Following mathematical expressions have been developed to display the dynamic behaviors of the rotor bearing 

system in the directions of y and z as the deformation along x axis has been considered to be negligible 

 

Similar to the procedures and concept adopted [4,5] and using generalized Galerkin’s principle Following 

mathematical expressions have been developed to display the dynamic behaviors of the rotor bearing system in 

the directions of y and z as the deformation along x axis has been considered to be negligible.   

 

3 2 21

1 2 2 sin
2

u d
v w d v v vw v m d f L t ,                                         (1) 

3 2 21

1 2 2 cos
2

u d
w v d w w wv w m d f L t .                          (2) 

Here, v and w are represented the displacement in Y and Z directions.  Normalized first mode shape of a Euler-

Bernoulli with a constant cross section in bending and simple supported at both ends has been used and expressed 

as sin /f x x L . It has been observed that equation of motion contains linear damping term and gyroscopic 

effect 1Q cP , nonlinear geometric coupled terms ( i.e., 3 2
P PQ ) due to mid-plane stretching effect of the 

shaft and forcing term ( i.e., 
2 sin

u d
m d f l t )  due to mass unbalance. The expressions for the coefficients 

can be obtained by using the generalized Galerkin’s principle with the consideration of single of vibration 

technique similar to the procedures explained in [5]. In the next section, the effect of various design parameters in 

graphically investigating the linear and nonlinear natural frequencies of the rotor-bearing system along with 

studying of nonlinear responses due to mass unbalanced. These outcomes have been depicted via time history and 

FFT analysis by using Runge-Kutta Method of higher order.  

 

3. Results And Discussion  

In all numerical simulation a metallic shaft element with length L = 0.4 m, radius R1 = 0.01 m, mass density 

( ) = 7800 kg/m3, Young’s modulus E = 2×1011 N/m2, and the rigid disk with outer radius R2 = 0.15 m and 

thickness h = 0.03 m, respectively. Here, distance of mass unbalance from the geometric centre of disk has been 

chosen as 0.15 m as that of the point laying on the outer surface of the disk element. Here damping constant c has 

been considered as 0.001 N-s/m2 for all simulations. Time history and FFT analysis have been developed to 

investigate the linear and nonlinear natural frequencies and their behaviour under the variation of spinning speed, 

and geometric nonlinearity. Phase portrait has also been illustrated to understand the nature of response. The 

variation of mass unbalanced has also been addressed via time history. 

 

3.1. Effect of Spinning Speed  

 In the present rotor-bearing system, shaft element is flexible in the directions except along the axis the shaft 

axis. Hence, vibration amplitude with definite deformation pattern is illustrated under various spinning speed. A 

periodic response in Figs. 2 and 3 has been observed when subjected to initial conditions i.e., (0) 0, (0) 0,v v  

(0) 0,  and (0) 0.w w  The natural frequencies about both directions are same as 47.24 Hz as presented in Fig. 

4. The natural frequencies have been obtained graphically for various values of spinning speeds. For each case, 
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the initial conditions and location of disk have been kept constant and neglected the nonlinear parts of the 

equations while calculating the natural frequencies. It has been observed that with increase in spinning speed, not 

only increased amplitude of the response but also increases the difference between the forward and backward 

natural frequencies from the Figs. 5-8. Also, two-period, quasi-periodic motion has been observed for any 

spinning speed except zero. Simultaneously, it has been investigated that for low value of spinning speed, a 

beating phenomenon has been developed. The variation of natural frequencies with respect to the spinning speed 

has been developed in Fig. 9 and it has clearly been established that range between both frequencies becomes 

larger for higher value of rotational speed of the shaft.  

 

 

                   

 

Fig. 2: Time history of shaft-disk system when subjected to 

initial excitation without spinning speed   

Fig. 3: Phase portrait of shaft-disk system when subjected to initial 

excitation without spinning speed   

 

                               

 

Fig. 4: FFT of shaft-disk system when subjected to initial 

excitation without spinning speed   

 

Fig. 5: FFT of shaft-disk system when subjected to spinning speed 

equal to 150 rad/sec   
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Fig. 6: FFT of shaft-disk system when subjected to spinning 

speed equal to 250 rad/sec 

Fig. 7: FFT of shaft-disk system when subjected to spinning speed 

equal to 300 rad/sec 

 

       

  

Fig. 8: Phase portrait of shaft-disk system when subjected to 

spinning speed equal to 300 rad/sec  

 

                 Fig. 9: Campbell diagram of shaft-disk system  

                       

 

 

Fig. 10: Natural frequencies of shaft with disk located at L/5 

when subjected to spinning speed equal to 200 rad/sec   

Fig. 11: Natural frequencies of shaft with disk located at L/4 when 

subjected to spinning speed equal to 200 rad/sec   
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Fig. 12: Natural frequencies of shaft with disk located at L/2 

when subjected to spinning speed equal to 200 rad/sec   

 

Fig. 13: Phase portrait of shaft with disk located at L/2 when 

subjected to spinning speed equal to 200 rad/sec   

 

3.2. Effect of Location of Disk 

  The effect of disk location along the span of the shaft element in calculating the natural frequencies have 

been illustrated Figs. 10-13. It is observed that when the location of disk closed to the one of the bearing ends, a 

clear disparity of natural frequencies in magnitude has been portrayed. The value of forward natural frequency is 

nearly double the backward natural frequency when the location of disk is at either of these two bearing ends. It 

has also been noted that both frequencies is shared the same value when the disk is located exactly at the middle 

point of shaft. At this location, the shaft behaves a single element without rotational speed since the gyroscopic 

effect at this position due to disk is negligible and nullified. However, the maximum response amplitude occurs 

when the disk is at mid-point of the shaft element. It needs to be noted that simulations of this section has been 

made based on initial conditions i.e., (0) 0, (0) 0v v , (0) 0,  and (0) 0.w w , A typical periodic response has 

been developed with the system of shaft having a disk located at mid-point of the shaft element as shown in Fig. 

11.  

3.3. Effect of Geometric Nonlinearity   

          The initial conditions are insignificant while calculating the natural frequencies with considering the 

small deformation theory which results linear coupled equation of motions. However, the initial conditions play 

an important role to evaluate the nonlinear natural frequencies and it has been observed that with increase in 

initial disturbance of (0)v , both frequencies are increased as shown in Figs. 14-16. However, the difference 

between these frequencies is unaffected by the variation of initial conditions. From the Fig. 17, it has clearly been 

depicted that the period of response is notable and varying with initial conditions. This variation in natural 

frequencies is greatly due to the strongly coupling of nonlinear terms. Hence, the effect of coupled terms 
3 2

P PQ  and 2 3
P Q Q is trivial for relatively small disturbance. 
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Natural Frequency (m) 

                        

 

 

Fig. 14: Natural frequencies of shaft with disk for the initial 

conditions i.e., (0) 0.005,v (0) 0v (0) 0,w  and (0) 0.w  

Fig. 15: Natural frequencies of shaft with disk for the initial 

conditions i.e., (0) 0.01,v (0) 0v (0) 0,w  and (0) 0.w  

 

                        

 

 

Fig. 16: Natural frequencies of shaft with disk for the initial 

conditions i.e., (0) 0.02,v (0) 0v (0) 0,w  and (0) 0.w  

Fig. 17: Time history of shaft with disk for the initial conditions 

i.e., (0) 0.01,v (0) 0v (0) 0,w  and (0) 0.w  

 

3.4. Effect of Unbalance Mass 

         The free vibration analysis has been investigated to calculate the natural frequencies under the 

influencing design parameters. The effect of mass unbalanced does not alter the fundamental frequencies of rotor-

bearing system as this appears as forcing terms which results inhomogeneous equation of motions. Hence, steady 

state and its stability are greatly influenced by the forcing terms which are here due to the mass unbalanced 

located away from the geometric center of disk. The effect of unbalanced on the dynamic motion has been 

illustrated in Figs. 18-21 with keeping other parameters constant. There are three possible ways to vary the 

magnitude of the forcing parameter expressed as 2

u
m d  either varying the rotational speed or mass of the 

unbalanced or location of the mass unbalanced.  The dotted line has been used to represent the effect of mass 

unbalanced whereas solid lines are used to depict the free vibration response. Here, the rotational speed of the 

shaft has been considered to study carefully about the effect of forcing parameter. It has been observed that with 

increase in speed of the shaft, the response amplitude becomes prominent. Simultaneously, from the Figs. 18-19, 

A
m

p
li

tu
d
e 

(m
/s

) 

A
m

p
li

tu
d
e 

(m
/s

) 

A
m

p
li

tu
d
e 

(m
/s

) 

Natural Frequency (m) 

Natural Frequency (m) 

Time(s)

v
 (

m
) 



808   H.P. Phadatare and Barun Pratiher  /  Procedia Engineering   144  ( 2016 )  801 – 809 

it has been noticed that the effect of mass unbalanced is insubstantial for the rotational speed less than 200 rad/s. 

Hence, it is noteworthy that upto rotational speed equal to 200 rad/s, transient part dominates over the steady state 

part and amplitude of steady state part becomes negligible.  

 

 

                          

 

Fig. 18: Time history of shaft-disk system when subjected to 

spinning speed equal to 100 rad/s  

Fig. 19: Time history of shaft-disk system when subjected to 

spinning speed equal to 200 rad/s 

 

 
 

 

 

 

Fig. 20: Time history of shaft-disk system when  subjected to          

spinning speed equal to 240 rad/s.                                                     

Fig. 21: Time history of shaft-disk system when  subjected 

to spinning speed equal to 300 rad/s 

 

4. Conclusion 

A numerical investigation of depicting the linear and nonlinear frequencies of lightly damped rotor-bearing 

system and studying the nonlinear responses of the system subjected to mass unbalanced. Geometrically coupled 

nonlinear differential equations of motion have been derived considering gyroscopic effect of disk as well as 

mass unbalanced while vibration effect along the shaft axis is ignored. Time history and FFT analysis have been 

established for finding the fundamental frequencies for the rotating under  variation of shaft diameter, effect of 

geometric nonlinearity and disk location while dynamic impact of mass unbalanced on the behavior of rotor 

bearing system has been investigated using time history. Following important observations have been depicted 

while studying the present system. 
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 It has been investigated that a beating phenomenon has been developed for low value of spinning speed and 

span between both frequencies becomes larger for higher value of rotational speed of the shaft.  

 The value of forward natural frequency is nearly the double with respect to backward natural frequency when 

the location of disk is at either of these two bearing ends. The gyroscopic effect has been negligible when the 

disk is placed at a mid-point of the shaft element.  

 The gap between the natural frequencies is unaffected by the changing the initial conditions and but the period 

of response is notable and varying with initial conditions due to the presence of geometric nonlinearity.  

 With increase in speed of the shaft, the response amplitude becomes prominent when the rotor bearing system 

is subjected to mass unbalanced. It has been noticed that the effect of mass unbalanced is insubstantial for the 

rotational speed less than 200 rad/s.  

  This article furnishes a proper understanding about the operating speed of the shaft element by which one can 

easily avoid the excessive vibration due to resonant conditions  
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