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Intuitionistic Fuzzy Logit Model of

Discrete Choice
Manish Aggarwal, Madasu Hanmandlu, Senior Member, IEEE , Mark Keane, and Kanad. K. Biswas

Abstract—The criteria evaluations are often vague (or
not crisp) in the real world multi-criteria decision making
(MCDM). The existing choice models are difficult to
apply in such situations. In this paper, we introduce an
intuitionistic fuzzy variant of multinomial logit model,
so as to give a decision-maker’s likely choices with
vague evaluations. The applicability of the proposed model
is shown through a real multi-criteria decision-making
application.

Index Terms—Decision analysis; choice behaviour;
discrete choice probability; intuitionistic fuzzy

I. Introduction

The discrete choice models provide a useful tool to
reperesent probabilistic uncertainty for precisely defined
random events. However, these models are rendered un-
usable for imprecisely defined notions with possibilistic

uncertainty, like: high income, low temperature, etc. that
are described by fuzzy set [37] and intuitionistic fuzzy set
(IFS) [4] theories. Very often in the real world situations,
both probabilistic and possibilistic uncertainties co-exist.
For example, it is highly likely that it will be a warm day.
This conveys probabilistic information about fuzzy events.
The notions of an event and its probability is extended to
the fuzzy domain with the concept of probability of a fuzzy

event in [38, 35]. In a similar vein, the notion of probability

of an intuitionistic fuzzy event is conceived in [27].
These existing defintions are derived from extending the

basic probability concept to the fuzzy and intuitionistic
fuzzy domains. The underlying set-theoretic premise for
considering the probability and its calculus is an experi-
ment E that is to be performed. Let its generic uncertain
outcome be denoted as X, x denote a generic outcome
of E after it actually taking place, and let Ω denote the
set of all conceived outcomes of E . Thus x œ Ω. Let F

denote a family of subsets of Ω, which are referred to as
events. In classical probability theory, it is presumed that
events are precisely defined in the sense that there is no
ambiguity in declaring whether an outcome x belongs to
an event A of Ω, or not. In contrast, with fuzzy sets, there
is an ambiguity in determining the degree of belonging
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(membership) of x in A, because A is not sharply defined.
In the case of intuitionistic fuzzy domain, there is also an
associated element of hesitancy associated with the graded
membership of x in A.

Since E is yet to be performed, the occurrence of any
x and thus A is uncertain. We denote this uncertainty by
a number P (A) in the range [0, 1], giving the probabil-
ity of event A. For a given “probability measure space”
(Ω, F , P), if A œ F is a crisp set with characteristic
function IA(x) such that IA(x) = 1 if x œ A and IA(x) = 0,
otherwise. Then

P(A) =
X

x

IA(x)P(x), x œ Ω, (1)

where P(x) is the probability that the outcome of E is x.
In the case of fuzzy subset Á of Ω, which is defined as fuzzy

event in [38], the probability measure of Á is given as

Π(Á) =

Z

Ω

µÁ(x)dP(x) = E[µÁ(x)] (2)

where µÁ(x) is the membership function of Á and E

denotes expectation. This definition is extended in [27]
for intuitionistic fuzzy event Ã by replacing µÁ with
intuitionistic fuzzy membership function µ̃Ã

The measure in (2) is essentially the same as that in (1),
as in both the cases, the probabilistic uncertainty pertains
to the uncertain outcome X = x of E . The reason for hav-
ing (2) is to consider another facet of uncertainty, termed
as possibilistic uncertainty, regarding the membership of
x in Á in the fuzzy domain (or membership of x in Ã in
intuitionistic fuzzy domain), which is not required in the
case of crisp set. Hence, in order to apply (2) in practice,
we require to have a complete knowledge of P(x).

In the context of multi criteria decision making
(MCDM), x indicates an alternative (option) that is cho-
sen by a decision maker (DM) among several others. An
alternative is described by multiple criteria evaluations
(utilities), and the DM chooses the alternative yielding
maximum utility. There is often an unobservable utility
associated with the DM’s choice, hence it is difficult
to predict with certainty the DM’s choice. To this end,
probabilistic models of discrete choice are commonly used
to give a DM’s choice probabilities for various alterna-
tives. Multinomial logit model (MNL) [23] is perhaps the
most popular model due to its easy interpretability. The
popularity of the discrete choice models can be gauged
through their applications in diverse domains in the recent
times. They are applied in severity analysis [9, 36, 22],
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price optimization [33], revenue optimization [13], location
planning [16], choice analysis problems [25, 24, 20, 15, 19],
risk analysis [6, 32, 39, 7, 18, 2], demand analysis [31, 11],
data analytics [14, 8, 5], regression analysis [21, 10, 26],
causal inference in medicine [28], and forecasting [17], to
name a few.

However, it can only be used when the criteria evalua-
tions are in terms of crisp values. In the real world decision
making, very often, the decision makers have only a partial
knowledge to concretely evaluate the alternatives against
multiple criteria. The fuzzy and IFS theories are quite
useful to imprecisely evaluate the alternatives, in MCDM
under uncertainty. Imprecision also arises in the real world
decision making wherein the goals, the constraints, and the
consequences of actions cannot be precisely specified. Our
objective in this note is to show how the notion of crisp
event (of a DM’s discrete choice) with imprecise criteria
evaluations can be described. To this end, we extend the
discrete choice models to fuzzy and intuitionistic fuzzy
domains.

The proposed class of logit models would be able to
address the situations where different DMs, with the same
criteria values and utility coefficients, may still have the
different choices, as per their individual degrees of satisfac-
tion derived from the criteria values. MNL model always
predicts the same choice probability in such situations. We
present an intuitionistic fuzzy variant of MNL model. Tbe
main contributions are summarized herewith:

• We give the background of the study in Section II.
• The intuitionistic fuzzy variant of MNL model is

introduced in Section III, along with the motivation.
• In Section IV, we give a real application of the

proposed work.
• Section V concludes the paper with an outlook on the

future work.

II. Background

A. Review of MNL Model

A decision-maker (DM), faces a choice among n al-
ternatives. The DM derives a certain level of utility (or
enjoyment) from each of the criteria associated with an
alternative. The net utility that decision-maker D obtains
from alternative ai is UD

i , j = 1, . . . , K. The DM chooses
the alternative that provides the highest utility. The be-
havioral model is therefore: choose alternative ai (between
alternatives ai and aj) if and only if UD

i > UD
j . We ease

the notations by obviating the superscript D from the
notations.

An alternative ai can be represented in terms of it’s
criteria values as following:

ai =
⇣

a
(1)
i , . . . , a

(M)
i

⌘

, (3)

where, M is the number of criteria associated with ai,
and a

(m)
i is the value ai takes for mth criterion cm. The

goal in any econometric model is to determine the utility
value Ui that depends on a ‘representative’ utility that is
a function of the observable criteria a

(m)
i , m = 1, . . . , M ,

and an unobservable component ‘i corresponding to ai.
That is:

Ui = Vi + ‘i (4)

where, ‘i represents the additive random component of
the utility, due to the unobservable factors. We denote
the representative utility that alternative ai holds for the
DM, by virtue of it’s observable criteria, as:

Vi = V (β,ai), (5)

where β is the vector of the coefficients that the DM
attaches to the given criteria. More explicitly, it is rep-
resented as

β = (—1, . . . , —M ) , (6)

where —(m) is the DM’s utility coefficient for a(m). The
vector β is specific to a DM. In [23], the function Vi =
V (β,ai) is taken as

Vi =
M
X

m=1

—ma
(m)
i (7)

Since, the ‘i component of the utility value Ui cannot be
determined, it is not possible to predict with certainty
about the best choice of alternative, relying only upon an
utility maximization model. In this regard, it is simpler to
predict the probability with which an alternative would be
chosen by a particular DM. It has been shown in [12, 30]
that the probability Pi that an alternative ai yields the
highest utility to the DM, and thus is chosen, is given by

Pi =
exp(Vi)

PK

k=1 exp(Vk)

=
exp

⇣

PM

m=1 —ma
(m)
i

⌘

PK

k=1 exp
⇣

PM

m=1 —ma
(m)
k

⌘

(8)

B. Intuitionistic Fuzzy Sets

In addition to the usual membership and non-
membership grades, an intuitionistic fuzzy value (IFV) is
devised to have a hesitancy degree. An IFV to IFS is what
a membership grade is to a fuzzy set. An IFV ã, comprises
of three grades: membership tã, non membership fã , and
hesitancy fiã , where tã, fã, fiã œ [0, 1], and tã+fã+fiã = 1.
Since, fiã = 1 ≠ (tã + fã), we omit fiã and IFV ã is
represented as ã = (tã, fã). The following operational
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laws [34, 3] are valid for IFVs ã and b̃ :-

ã ü b̃ = (tã + tb̃ ≠ tãtb̃, fãfb̃) (9)

ã ¢ b̃ = (tãtb̃, fã + fb̃ ≠ fãfb̃, fãfb̃) (10)

⁄ã = (1 ≠ (1 ≠ tã)λ, (fã)λ), ⁄ > 0 (11)

(ã)λ = ((ã)λ, (1 ≠ (1 ≠ fã)λ) (12)

ã £ b̃ =
�

tã£b̃, fã£b̃

�

, where (13)

tã£b̃ =

8

>

>

>

<

>

>

>

:

if tã Æ tb̃ and fã Ø fb̃
tã

t
b̃

, and tb̃ > 0

and tãfib̃ Æ fiãtb̃

0, otherwise

and (14)

fã£b̃ =

8

>

>

>

<

>

>

>

:

if tã Æ tb̃ and fã Ø fb̃
tã≠t

b̃

1≠t
b̃

, and tb̃ > 0

and tãfib̃ Æ fiãtb̃

1, otherwise

(15)

where ü, ¢, and £ are the intuitionistic fuzzy counterparts
of additive, multiplicative, and division operations.

III. Intuitionistic Fuzzy MNL Model

A. Motivation

It has been shown in [29] that humans show a utility
maximizing decision behaviour. A decision maker (DM)
sees an alternative as a bundle of desired criteria, and the
DM chooses the alternative with the greatest aggregated
score of the utility values, corresponding to the given
criteria. In the existing choice models, the product of
the actual value of a criterion, and the corresponding
utility coefficient is considered as the utility derived by
a DM from the given criterion value. With this approach,
all of the values that a criterion assumes for the given
alternatives are scaled up (or down) in accordance with
the corresponding utility coefficient. The utility coefficient
vector therefore models a DM’s decision behaviour.

In real decision making, however, quite often, the crisp
criteria values are not known precisely. For instance,
in a supplier selection problem, various alternatives are
evaluated against different criteria, say brand value, past
customer experiences etc. In such scenarios, the criteria
values are best described by fuzzy values. Besides, in prac-
tice, a criterion value is perceived differently by different
individuals as per their own background. The perceived
values can be easily represented through fuzzy evaluations,
in contrast to the crisp values.

To the best of our knowledge there is no model in the
literature to give the choice probability of an alternative,
based on the fuzzy evaluations. This forms our main moti-
vation behind this work. We propose a choice model that
could predict the choice probabilities for the alternatives
on the basis of the vague (fuzzy) criteria values. In the
real world decision-making, fuzzy criteria values are quite
common, because the crisp values are often inaccessible,
or it requires a lot of effort to collect them. In comparison,

the fuzzy values are far more easy to assess than the crisp
values with precision.

Therefore, a choice model that is able to process fuzzy
criteria values holds a substantial potential in the rep-
resentation of the real world decision-making situations.
More specifically, we propose an intuitionistic-fuzzy values
based logit choice model that also considers the hesitancy
of the DM, while determining the membership grade.
The proposed model reduces to a fuzzy logit model when
hesitancy is nil.

B. The Proposed Model

In the real world MCDM, due to time constraints or
the nature of the problem, the DMs often need to resort
to imprecise evaluations. In this regard, it is easy to
conceptualize a fuzzy MNL model on the lines of the
conventional MNL model as shown in (8). The fuzzy MNL
model is a special case of MNL model, with fuzzy criteria
values, i.e. a

(m)
i œ [0, 1]. However, such a fuzzy MNL lacks

a provision to take on record the DM’s hesitancy that is
often encountered in determining a membership grade. In
this section, we introduce an intuitionistic fuzzy variant of
MNL model, which we term as intuitionistic fuzzy MNL
(IF-MNL). It helps to extend the abilties of fuzzy MNL
by also considering the agent’s hesitancy associated with
a membership degree. Besides, IF-MNL model reduces to
fuzzy MNL in the case of nil hesitancy.

We denote each alternative ai in terms of the intuition-
istic fuzzy criteria values as:

ãi =
⇣

ã
(1)
i , . . . , ã

(M)
i

⌘

, (16)

where each of the ã
(m)
i , m = 1, . . . , M values is a IFV,

shown as
⇣

t
(m)
i , f

(m)
i

⌘

. The observable utility correspond-

ing to IFV ã
(m)
i is computed by applying (10) as:

ṽ
(m)
i = —m ¢ ã

(m)
i =

✓

1 ≠

⇣

1 ≠ t
(m)
i

⌘βm

,
⇣

f
(m)
i

⌘βm

◆

(17)
The representative utility Ṽi is determined as aggregating
the utility values ṽ

(m)
i , m = 1, . . . , M , so obtained as:

Ṽi =

M
M

m=1

—m ¢ ã
(m)
i

=

"

1 ≠

M
Y

m=1

⇣

1 ≠ t
(m)
i

⌘βm

,

M
Y

m=1

⇣

f
(m)
i

⌘βm

#

,

(18)

where —m œ [0, 1]. The intuitionistic fuzzy value ã
(m)
i in

conjunction with the utility coefficient —m can be seen
as the DM’s “taste” for cm. The vector of —m values
characterize the unique choice behaviour of the DM.

We emphasize that the representative utility obtained in
(18) is a intuitionistic fuzzy value, as it is obtained through
the aggregation of intuitionistic fuzzy criteria values (See
[1]). Replacing (18) in (8), we obtain the choice probability
Pi for alternative ai to be chosen as :



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 4

Pi =

"

1 ≠

M
Y

m=1

⇣

1 ≠ t
(m)
i

⌘βm

,

M
Y

m=1

⇣

f
(m)
i

⌘βm

#

£

"

K
M

k=1

 

1 ≠

M
Y

m=1

⇣

1 ≠ t
(m)
k

⌘βm

,

M
Y

m=1

⇣

f
(m)
i

⌘βm

!#

=

"

1 ≠

M
Y

m=1

⇣

1 ≠ t
(m)
i

⌘βm

,

M
Y

m=1

⇣

f
(m)
i

⌘βm

#

£

"

K ≠

K
X

k=1

M
Y

m=1

⇣

1 ≠ t
(m)
k

⌘βm

≠

K
Y

k=1

 

1 ≠

M
Y

m=1

⇣

1 ≠ t
(m)
k

⌘βm

!

,

K
Y

k=1

 

M
Y

m=1

⇣

f
(m)
i

⌘βm

!#

(19)

Unlike the conventional MNL model, the proposed IF-
MNL model considers the agent’s perceived enjoyment
values, weighted by the relative importance that the agent
associates with each criterion. Hence, IF-MNL model
considers a greater degree of individualism through both
intuitionistic fuzzy evaluations as well as the utility coef-
ficients. We summarize the main features of the proposed
IF-MNL model as:

• IF-MNL model considers the individualistic utility
value derived by th DM from a criterion value along
with the relative importance he/she attaches to the
criterion.

• IF-MNL model implies a proportional substitution1

across alternatives, with the given model’s specifica-
tion of representative utility.

• Along with the inconsistencies in the DM’s evaluation
of the criteria values, IML models can capture the
dynamics of repeated choice.

IV. Case-study

We devote this section to illustrate the proposed choice
model in a real application on the selection of the most
suitable car by a prospective buyer. Typically, in such
decisions, a decision-maker (DM) evaluates each of the
alternatives against a set of criteria. Often, the DM wants
to determine the best choice quickly and also does not
have access to the crisp values, in which case the DM
vaguely evaluates the criteria values in his/her cognition.
For example, in a car-buying situation, a prospective
buyer considers a large number of alternatives, each with
multiple criteria such as length, height, brand value, lux-
ury. In such situations, the prospective buyer arrives at
his/her choice based on his/her perceptions of the criteria
values. Given such perceptions of a DM, we illustrate the
usefulness of the proposed model in predicting a DM’s best
choice, along with the probability of choosing the same.

A. Selection of the Best Car

We consider a case-study that is about a prospective
buyer’s selection of the car that suits him the most. The
buyer evaluates multiple alternatives against a set of desir-
able criteria :- c1: length (mm), c2: width (mm), c3: height
(mm), and c4: engine capacity (cc). The utility coefficients
for the given criteria are: (0.35, 0.60, 0.06, 0.15).

1Independence from irrelevant alternatives (IIA)

For the sake of the case-study, and drawing out com-
parison with the conventional model, we collected the
actual criteria values for the latest car models, available in
the Indian markets. The real identities of the car models
have been withheld. We convert these values to IFVs as
following:

t
(m)
i =

a
(m)
i ≠ a

(m)

min

a
(m)
max ≠ a

(m)

min

f
(m)
i =

2 ú (1 ≠ t
(m)
i )

3

fi
(m)
i = 1 ≠ t

(m)
i ≠ f

(m)
i ,

where a
(m)
i refers to the actual value that alternative ai

takes for cm, a
(m)
max and a

(m)

min are the maximum and the
minimum values among the collection of values for cm

against the given alternatives. The corresponding IFV for

a
(m)
i is thus shown as: ã(i) =

⇣

t
(m)
i , f

(m)
i , fi

(m)
i

⌘

.

The criteria values, in terms of IFVs, for the given car
models are shown in Table I. We give the corresponding
utility values in Table II each of the models, we compute
IF-MNL choice probability, shown in (19). The choice
probabilities, so obtained are populated in Table ??. The
choice probabilities, along with the alternatives, are shown
in the descending order of their magnitudes. We observe
that the a3 is the most likely alternative to be chosen
on the basis of intuitionistic-fuzzy representative utility.
We note that a3 is only the most probable alternative by
the prospective buyer to be chosen, and the real choice
could be different. This is because of the presence of un-
observable component of the utility. When the observable
or representative utility forms a significant portion of the
total utility, then the alternative with the highest choice
probability is quite likely to be actually chosen. If the
unobservable utility is nil, or all possible criteria have been
considered, then it is possible to determine the best choice
of the prospective buyer with certainty.

We also redo the case-study, and compute the choice
probability with the conventional MNL model. The choice
probabilities, in the descending order, are shown as the
last column of Table III. We notice some differences in
the alternative rankings obtained with the proposed IF-
MNL and the conventional MNL model. One of the main
reasons for the same is the fact that MNL model lacks a
provision to take account of the hesitancy values that may
lead to significant difference in the choice probabilities.
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TABLE I: Intuitionistic Fuzzy Criteria Values

ai c1 c2 c3 c4

1 (0.73,0.18) (0.58,0.28) (0.09,0.61) (0.63,0.25)

2 (0.59,0.27) (0.37,0.42) (0.25,0.50) (0.19,0.54)

3 (0.92,0.05) (1.00,0.00) (0.63,0.25) (0.73,0.18)

4 (0.53,0.31) (0.32,0.45) (0.26,0.49) (0.20,0.53)

5 (0.86,0.09) (0.88,0.08) (0.19,0.54) (0.72,0.19)

6 (0.57,0.29) (0.36,0.43) (0.24,0.51) (0.17,0.55)

7 (1.00,0.00) (0.64,0.24) (0.34,0.44) (0.47,0.35)

8 (0.68,0.21) (0.39,0.41) (0.27,0.49) (0.20,0.53)

9 (0.55,0.30) (0.71,0.19) (0.05,0.63) (0.72,0.19)

10 (0.82,0.12) (0.48,0.35) (0.30,0.47) (0.19,0.54)

11 (0.77,0.15) (0.59,0.27) (0.22,0.52) (0.73,0.18)

12 (0.81,0.13) (0.81,0.13) (0.31,0.46) (0.33,0.45)

13 (0.59,0.27) (0.67,0.22) (0.00,0.67) (1.00,0.00)

14 (0.20,0.53) (0.07,0.62) (0.37,0.42) (0.06,0.63)

15 (0.27,0.49) (0.13,0.58) (0.33,0.45) (0.09,0.61)

16 (0.64,0.24) (0.62,0.25) (0.00,0.67) (0.20,0.53)

17 (0.00,0.67) (0.05,0.63) (0.77,0.15) (0.00,0.67)

18 (0.58,0.28) (0.19,0.54) (0.66,0.23) (0.27,0.49)

19 (0.09,0.61) (0.01,0.66) (0.40,0.40) (0.04,0.64)

20 (0.65,0.23) (0.60,0.27) (0.00,0.67) (0.53,0.31)

21 (0.00,0.67) (0.05,0.63) (0.77,0.15) (0.00,0.67)

22 (0.58,0.28) (0.19,0.54) (0.66,0.23) (0.27,0.49)

23 (0.09,0.61) (0.01,0.66) (0.40,0.40) (0.04,0.64)

24 (0.65,0.23) (0.60,0.27) (0.00,0.67) (0.53,0.31)

25 (0.65,0.23) (0.53,0.31) (0.14,0.57) (0.45,0.37)

26 (0.67,0.22) (0.58,0.28) (0.09,0.61) (0.77,0.15)

27 (0.81,0.13) (0.60,0.27) (0.21,0.53) (0.77,0.15)

28 (0.65,0.23) (0.60,0.27) (0.01,0.66) (0.45,0.37)

29 (0.20,0.53) (0.11,0.59) (0.33,0.45) (0.11,0.59)

30 (0.37,0.42) (0.20,0.53) (0.36,0.43) (0.11,0.59)

31 (0.37,0.42) (0.23,0.51) (0.40,0.40) (0.10,0.60)

32 (0.66,0.23) (0.27,0.49) (0.34,0.44) (0.11,0.59)

33 (0.79,0.14) (0.34,0.44) (0.80,0.13) (0.22,0.52)

34 (0.37,0.42) (0.40,0.40) (1.00,0.00) (0.28,0.48)

35 (0.37,0.42) (0.22,0.52) (0.38,0.41) (0.09,0.61)

36 (0.37,0.42) (0.32,0.45) (0.59,0.27) (0.13,0.58)

37 (0.80,0.13) (0.46,0.36) (0.75,0.17) (0.23,0.51)

38 (0.32,0.45) (0.22,0.52) (0.38,0.41) (0.09,0.61)

39 (0.75,0.17) (0.61,0.26) (0.22,0.52) (0.59,0.27)

40 (0.32,0.45) (0.22,0.52) (0.38,0.41) (0.13,0.58)

41 (0.82,0.12) (0.44,0.37) (0.31,0.46) (0.20,0.53)

42 (0.37,0.42) (0.19,0.54) (0.36,0.43) (0.13,0.58)

43 (0.59,0.27) (0.27,0.49) (0.57,0.29) (0.13,0.58)

44 (0.56,0.29) (0.20,0.53) (0.47,0.35) (0.13,0.58)

45 (0.56,0.29) (0.20,0.53) (0.47,0.35) (0.13,0.58)

46 (0.58,0.28) (0.22,0.52) (0.35,0.43) (0.13,0.58)

47 (0.63,0.25) (0.40,0.40) (0.57,0.29) (0.20,0.53)

48 (0.35,0.43) (0.21,0.53) (0.40,0.40) (0.13,0.58)

49 (0.50,0.33) (0.34,0.44) (0.50,0.33) (0.12,0.59)

50 (0.65,0.23) (0.37,0.42) (0.31,0.46) (0.14,0.57)

51 (0.36,0.43) (0.27,0.49) (0.36,0.43) (0.12,0.59)

52 (0.13,0.58) (0.00,0.67) (0.35,0.43) (0.04,0.64)

53 (0.26,0.49) (0.16,0.56) (0.37,0.42) (0.09,0.61)

54 (0.17,0.55) (0.07,0.62) (0.41,0.39) (0.08,0.61)

55 (0.37,0.42) (0.31,0.46) (0.42,0.39) (0.12,0.59)

56 (0.70,0.20) (0.49,0.34) (0.57,0.29) (0.23,0.51)

57 (0.21,0.53) (0.25,0.50) (0.51,0.33) (0.09,0.61)

58 (0.60,0.27) (0.45,0.37) (0.54,0.31) (0.20,0.53)

59 (0.55,0.30) (0.22,0.52) (0.32,0.45) (0.14,0.57)

60 (0.37,0.42) (0.16,0.56) (0.37,0.42) (0.08,0.61)

TABLE II: Intuitionistic Fuzzy Utility Values

ai c1 c2 c3 c4 Ṽi

1 (0.37,0.55) (0.41,0.47) (0.01,0.97) (0.14,0.81) (0.25,0.67)

2 (0.27,0.63) (0.24,0.60) (0.02,0.96) (0.03,0.91) (0.15,0.76)

3 (0.59,0.35) (1.00,0.00) (0.06,0.92) (0.18,0.77) (1.00,0.00)

4 (0.23,0.67) (0.21,0.62) (0.02,0.96) (0.03,0.91) (0.13,0.78)

5 (0.50,0.43) (0.72,0.22) (0.01,0.96) (0.17,0.78) (0.42,0.52)

6 (0.26,0.64) (0.24,0.60) (0.02,0.96) (0.03,0.91) (0.14,0.76)

7 (1.00,0.00) (0.46,0.42) (0.02,0.95) (0.09,0.85) (1.00,0.00)

8 (0.33,0.58) (0.26,0.58) (0.02,0.96) (0.03,0.91) (0.17,0.74)

9 (0.25,0.65) (0.52,0.38) (0.00,0.97) (0.17,0.78) (0.26,0.66)

10 (0.45,0.47) (0.33,0.53) (0.02,0.96) (0.03,0.91) (0.23,0.68)

11 (0.40,0.52) (0.41,0.46) (0.02,0.96) (0.18,0.77) (0.27,0.65)

12 (0.44,0.49) (0.63,0.29) (0.02,0.95) (0.06,0.89) (0.34,0.59)

13 (0.27,0.63) (0.48,0.41) (0.00,0.98) (1.00,0.00) (1.00,0.00)

14 (0.07,0.80) (0.04,0.75) (0.03,0.95) (0.01,0.93) (0.04,0.85)

15 (0.10,0.78) (0.08,0.72) (0.02,0.95) (0.01,0.93) (0.05,0.84)

16 (0.30,0.61) (0.44,0.44) (0.00,0.98) (0.03,0.91) (0.21,0.70)

17 (0.00,0.87) (0.03,0.76) (0.08,0.89) (0.00,0.94) (0.03,0.86)

18 (0.26,0.64) (0.12,0.69) (0.06,0.91) (0.05,0.90) (0.13,0.78)

19 (0.03,0.84) (0.01,0.78) (0.03,0.95) (0.01,0.94) (0.02,0.87)

20 (0.31,0.60) (0.42,0.46) (0.00,0.98) (0.11,0.84) (0.23,0.69)

21 (0.00,0.87) (0.03,0.76) (0.08,0.89) (0.00,0.94) (0.03,0.86)

22 (0.26,0.64) (0.12,0.69) (0.06,0.91) (0.05,0.9) (0.13,0.78)

23 (0.03,0.84) (0.01,0.78) (0.03,0.95) (0.01,0.94) (0.02,0.87)

24 (0.31,0.60) (0.42,0.46) (0.00,0.98) (0.11,0.84) (0.23,0.69)

25 (0.31,0.60) (0.37,0.50) (0.01,0.97) (0.09,0.86) (0.21,0.71)

26 (0.32,0.59) (0.41,0.46) (0.01,0.97) (0.20,0.75) (0.25,0.67)

27 (0.44,0.49) (0.42,0.45) (0.01,0.96) (0.20,0.75) (0.29,0.63)

28 (0.30,0.60) (0.42,0.45) (0.00,0.98) (0.09,0.86) (0.22,0.69)

29 (0.08,0.80) (0.07,0.73) (0.02,0.95) (0.02,0.92) (0.05,0.85)

30 (0.15,0.74) (0.13,0.68) (0.03,0.95) (0.02,0.92) (0.08,0.81)

31 (0.15,0.74) (0.15,0.67) (0.03,0.95) (0.02,0.93) (0.09,0.81)

32 (0.31,0.60) (0.17,0.65) (0.02,0.95) (0.02,0.92) (0.14,0.76)

33 (0.42,0.50) (0.22,0.61) (0.09,0.89) (0.04,0.91) (0.21,0.70)

34 (0.15,0.74) (0.26,0.58) (1.00,0.00) (0.05,0.90) (1.00,0.00)

35 (0.15,0.74) (0.14,0.68) (0.03,0.95) (0.01,0.93) (0.08,0.82)

36 (0.15,0.74) (0.21,0.62) (0.05,0.92) (0.02,0.92) (0.11,0.79)

37 (0.43,0.49) (0.31,0.54) (0.08,0.90) (0.04,0.90) (0.23,0.68)

38 (0.12,0.76) (0.14,0.68) (0.03,0.95) (0.01,0.93) (0.08,0.82)

39 (0.38,0.53) (0.43,0.45) (0.02,0.96) (0.13,0.82) (0.26,0.66)

40 (0.12,0.76) (0.14,0.68) (0.03,0.95) (0.02,0.92) (0.08,0.82)

41 (0.45,0.47) (0.30,0.55) (0.02,0.95) (0.03,0.91) (0.22,0.69)

42 (0.15,0.74) (0.12,0.69) (0.03,0.95) (0.02,0.92) (0.08,0.82)

43 (0.27,0.63) (0.18,0.65) (0.05,0.93) (0.02,0.92) (0.14,0.77)

44 (0.25,0.65) (0.12,0.69) (0.04,0.94) (0.02,0.92) (0.11,0.79)

45 (0.25,0.65) (0.12,0.69) (0.04,0.94) (0.02,0.92) (0.11,0.79)

46 (0.26,0.64) (0.14,0.68) (0.03,0.95) (0.02,0.92) (0.12,0.79)

47 (0.30,0.61) (0.26,0.58) (0.05,0.93) (0.03,0.91) (0.17,0.74)

48 (0.14,0.75) (0.13,0.68) (0.03,0.95) (0.02,0.92) (0.08,0.82)

49 (0.22,0.68) (0.22,0.61) (0.04,0.94) (0.02,0.92) (0.13,0.77)

50 (0.31,0.60) (0.24,0.59) (0.02,0.95) (0.02,0.92) (0.16,0.75)

51 (0.15,0.74) (0.17,0.65) (0.03,0.95) (0.02,0.92) (0.10,0.81)

52 (0.05,0.83) (0.00,0.78) (0.03,0.95) (0.01,0.94) (0.02,0.87)

53 (0.10,0.78) (0.10,0.70) (0.03,0.95) (0.01,0.93) (0.06,0.83)

54 (0.06,0.81) (0.04,0.75) (0.03,0.95) (0.01,0.93) (0.04,0.86)

55 (0.15,0.74) (0.20,0.63) (0.03,0.95) (0.02,0.92) (0.10,0.80)

56 (0.35,0.57) (0.33,0.52) (0.05,0.93) (0.04,0.90) (0.21,0.71)

57 (0.08,0.80) (0.16,0.66) (0.04,0.94) (0.01,0.93) (0.07,0.82)

58 (0.27,0.63) (0.30,0.55) (0.05,0.93) (0.03,0.91) (0.17,0.74)

59 (0.25,0.65) (0.14,0.67) (0.02,0.95) (0.02,0.92) (0.11,0.79)

60 (0.15,0.74) (0.10,0.70) (0.03,0.95) (0.01,0.93) (0.07,0.82)
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TABLE III: Alternative Ranks obtained with IF-MNL and
MNL models

Rank
IF-MNL MNL

�
�
�
��ai

i
Pi

�
�
�
��ai

i
Pi

1 3 0.0824 3 0.0300

2 7 0.0824 5 0.0265

3 13 0.0824 12 0.0237

4 34 0.0824 7 0.0235

5 5 0.0346 27 0.0222

6 12 0.028 13 0.0219

7 27 0.0239 11 0.0217

8 11 0.0223 39 0.0213

9 9 0.0214 9 0.0213

10 39 0.0214 26 0.0208

11 1 0.0206 1 0.0207

12 26 0.0206 20 0.0200

13 10 0.019 24 0.0200

14 20 0.019 28 0.0197

15 24 0.019 37 0.0194

16 37 0.019 10 0.0192

17 28 0.0181 25 0.0192

18 41 0.0181 16 0.0191

19 16 0.0173 56 0.0189

20 25 0.0173 41 0.0188

21 33 0.0173 33 0.0180

22 56 0.0173 58 0.0176

23 8 0.014 47 0.0174

24 47 0.014 8 0.0172

25 58 0.014 50 0.0168

26 50 0.0132 34 0.0164

27 2 0.0124 2 0.0164

28 6 0.0115 6 0.0162

29 32 0.0115 32 0.0158

30 43 0.0115 49 0.0158

31 4 0.0107 43 0.0157

32 18 0.0107 4 0.0157

33 22 0.0107 18 0.0153

34 49 0.0107 22 0.0153

35 46 0.0099 36 0.0150

36 36 0.0091 46 0.0149

37 44 0.0091 59 0.0148

38 45 0.0091 44 0.0147

39 59 0.0091 45 0.0147

40 51 0.0082 55 0.0147

41 55 0.0082 51 0.0143

42 31 0.0074 31 0.0139

43 30 0.0066 35 0.0138

44 35 0.0066 48 0.0138

45 38 0.0066 30 0.0137

46 40 0.0066 42 0.0137

47 42 0.0066 40 0.0136

48 48 0.0066 38 0.0135

49 57 0.0058 57 0.0134

50 60 0.0058 60 0.0133

51 53 0.0049 53 0.0129

52 15 0.0041 15 0.0126

53 29 0.0041 29 0.0123

54 14 0.0033 14 0.0118

55 54 0.0033 54 0.0118

56 17 0.0025 17 0.0111

57 21 0.0025 21 0.0111

58 19 0.0016 19 0.0110

59 23 0.0016 23 0.0110

60 52 0.0016 52 0.0110

Intuitively too, most DMs would not like to place much
confidence in the fuzzy evaluations, in which they face
a high degree of hesitancy. The effect of desirable (say
high) membership degree is considerably dampened, if the
associated hesitancy is high. These aspects of the real-life
decision-making remain unconsidered in the conventional
choice models, and thus IF-MNL model may be quite
useful in practice.

V. Conclusions

We propose intuitionistic fuzzy multinomial logit (IF-
MNL) model to give the choice probabilities of a DM, by
taking into consideration the degree of satisfaction derived
by the evaluating agent from the criteria values in terms
of the intuitionistic fuzzy values. The proposed model is
of significance in the real world decision making, where
the criteria values are often not precisely known, rendering
the conventional models of little applicability. Besides, the
proposed model is especially useful in those applications,
where various alternatives are evaluated against different
criteria vaguely in terms of the satisfaction an alternative-
criterion combination provide to a DM. In such situations,
the presence of intuitionistic fuzzy values facilitates the
representation of the individualistic degree of satisfaction
that may significantly vary depending upon the evaluating
agent’s background, experience, or values.

It is important to note that the proposed IF-MNL
model, like MNL model, also considers that the unobserv-
able utility component is identically and independently
distributed across the alternatives. In the real world, there
might be such situations where this might not hold true.
In this regard, the extensions of the proposed model as
probit, nested logit, and mixed logit woulf be worthwhile.
Besides, it would be interesting to empirically learn the
intuitionistic fuzzy evaluations (of an agent) by fitting
the proposed logit model to the agent’s preference data,
through emerging machine learning algorithms. The pro-
posed models find application in the real world decision
making probems under uncertainty, such as credit scoring
analysis, supplier selection, consumer behaviour, and mar-
keting strategy. These applications are kept for a future
study.

References

[1] M. Aggarwal. A new family of induced owa oper-
ators. International Journal of Intelligent Systems,
30(2):170–205, 2015.

[2] T. Astebro and J. K. Winter. More than a dummy:
The probability of failure, survival and acquisition
of firms in financial distress. European Management

Review, 9(1):1–17, 2012.
[3] K. Atanassov. On Intuitionistic Fuzzy Sets Theory.

Springer-Verlag, Berlin, Heidelberg, 2012.
[4] K. T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets

and Systems, 20:87–96, 1986.
[5] Y. Bentz and D. Merunka. Neural networks and

the multinomial logit for brand choice modelling: a



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 7

hybrid approach. Journal of Forecasting, 19(3):177–
200, 2000.

[6] N. M. Boyson, C. W. Stahel, and R. M. Stulz. Hedge
fund contagion and liquidity shocks. The Journal of

Finance, 65(5):1789–1816, 2010.
[7] G. Caggiano, P. Calice, and L. Leonida. Early warn-

ing systems and systemic banking crises in low income
countries: A multinomial logit approach. Journal of

Banking & Finance, 47:258–269, 2014.
[8] P. Changpetch and D. K.J. Lin. Selection of multino-

mial logit models via association rules analysis. Wiley

Interdisciplinary Reviews: Computational Statistics,
5:68–77, 2013.

[9] C. Chen, G. Zhang, R. Tarefder, J. Ma, H. Wei,
and H. Guan. A multinomial logit model-bayesian
network hybrid approach for driver injury severity
analyses in rear-end crashes. Accident Analysis &

Prevention, 80:76–88, 2015.
[10] P. Congdon. Multinomial and Ordinal Regression

Models Bayesian Statistical Modelling, Second Edi-

tion. 2007.
[11] P. Davis and P. Schiraldi. The flexible coefficient

multinomial logit (fc-mnl) model of demand for differ-
entiated products. The RAND Journal of Economics,
45:32–63, 2014.

[12] T. Domencich and D. L. McFadden. Urban Travel

Demand: A Behavioral Analysis. North Holland,
1975.

[13] J. Feldman and H. Topaloglu. Bounding optimal
expected revenues for assortment optimization under
mixtures of multinomial logits. Production and Oper-

ations Management, 2015.
[14] U. Gazder and N. T. Ratrout. A new logit-artificial

neural network ensemble for mode choice modeling: a
case study for border transport. Journal of Advanced

Transportation, 2015.
[15] A. B. Grigolon, A. W.J. Borgers, A. D.A.M. Kem-

perman, and H. J.P. Timmermans. Vacation length
choice: A dynamic mixed multinomial logit model.
Tourism Management, 41:158–167, 2014.

[16] K. Haase and Pages 689-691. S. Müller 3, 1 Febru-
ary 2014. A comparison of linear reformulations
for multinomial logit choice probabilities in facility
location models. European Journal of Operational

Research, 232:689–691, 2014.
[17] D. A. Hensher and S. Jones. Forecasting corpo-

rate bankruptcy: Optimizing the performance of the
mixed logit model. Abacus, 43(3):241–264, 2007.

[18] D. A. Hensher, S. Jones, and W. H. Greene. An error
component logit analysis of corporate bankruptcy
and insolvency risk in australia. Economic Record,
83(260):86–103, 2007.

[19] S. Jackman. Bayesian Analysis of Choice Making

Bayesian Analysis for the Social Sciences. 2009.
[20] B. Li. The multinomial logit model revisited: A

semi-parametric approach in discrete choice analy-
sis,. Transportation Research Part B: Methodological,,
45(3):461–473, 2011.

[21] X. Liu and C. C. Engel. Predicting longitudinal tra-
jectories of health probabilities with random-effects
multinomial logit regression. Statistics in Medicine,
31(29):4087–4101, 2012.

[22] J. Maiti and A. Bhattacherjee. Evaluation of risk of
occupational injuries among underground coal mine
workers through multinomial logit analysis. Journal

of Safety Research, 30(2):93–101, 1999.
[23] D. McFadden. Frontier of Econometrics, chapter

Conditional Logit Analysis of Quantitative Choice
Behavior. Academic Press, New York, 1973.

[24] S. Pulugurta, A. Arun, and M. Errampalli. Use of
artificial intelligence for mode choice analysis and
comparison with traditional multinomial logit model.
Procedia - Social and Behavioral Sciences, 104:583–
592, 2013.

[25] T. H. Rashidi, J. Auld, and A. (Kouros) Moham-
madian. A behavioral housing search model: Two-
stage hazard-based and multinomial logit approach
to choice-set formation and location selection. Trans-

portation Research Part A: Policy and Practice,
46:1097–1107, 2012.

[26] R. D. Retherford and M. K. Choe. Multinomial logit
regression. Statistical Models for Causal Analysis,
pages 151–165, 2011.

[27] E. Szimdt and J. Kacprzyk. Fuzzy Systems Confer-

ence Proceedings, chapter A concept of a probability
of an intuitionistic fuzzy event, pages 1346–1349.
IEEE, 1999.

[28] R. Tchernis, M. Horvitz-Lennon, and S.-L. T. Nor-
mand. On the use of discrete choice models for causal
inference. Statistics in Medicine, 24(14):2197–2212,
2005.

[29] L. Thurstone. A law of comparative judgement,
psychological review. Psychological Review, 34:273–
86, 1927.

[30] K. Train. Discrete Choice Methods with Simulation.
Cambridge University Press, 2002.

[31] C. van Campen and I. B. Woittiez. Client demands
and the allocation of home care in the netherlands.
a multinomial logit model of client types, care needs
and referrals. Health Policy, 64(2):229–241, 2003.

[32] N. Vozlyublennaia. Does idiosyncratic risk matter
for individual securities? Financial Management,
41(3):555–590, 2012.

[33] R. Wang. Capacitated assortment and price optimiza-
tion under the multinomial logit model. Operations

Research Letters, 40:492–497, 2012.
[34] Z. S. Xu. Intuitionistic fuzzy aggregation operations.

IEEE Trans. Fuzzy Syst., 15:1179–1187, 2007.
[35] R. R. Yager. A note on probabilities of fuzzy events.

Information Sciences, 18:113–129, 1979.
[36] F. Ye and D. Lord. Comparing three commonly used

crash severity models on sample size requirements:
Multinomial logit, ordered probit and mixed logit
models. Analytic Methods in Accident Research, 1:72–
85, 2014.

[37] L. A. Zadeh. Fuzzy sets. Information and Control,



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 8

8:338–353, 1965.
[38] L. A. Zadeh. Fuzzy Sets and Applications, Selected

Papers by L.A. Zadeh, chapter Probability measures
of fuzzy events, pages 45–51. John Wiley, 1968.

[39] A. Kemal Çelik and E. Oktay. A multinomial logit
analysis of risk factors influencing road traffic injury
severities in the erzurum and kars provinces of turkey.
Accident Analysis & Prevention, 72:66–77, 2014.

Manish Aggarwal received his
B.E. degree in CSE in 2000, the
M.Tech degree in Computer Appli-
cations in 2006 and the Ph.D. in In-
formation Technology in 2013, both

from IIT Delhi. He is currently a
faculty member at Indian Institute
of Management Ahmedabad, India
in the Information Systems area.
His research interests include multi
attribute decision making, machine

learning techniques, preference learning, fuzzy optimization, fuzzy
decision analysis, rough set theory, evolutionary multi-objective op-
timization, aggregation operators, non-classical logics, approximate
reasoning, and plausible and analogical reasoning with applications
to artificial intelligence. He has published extensively in his areas of
interest in journals such as IEEE Trans. on Fuzzy Systems, IEEE
Trans. on Knowledge & Data Engineering, Inf. Sci., Applied Soft
Computing, International J. of Intelligent Systems, J. of Intelligent
and Fuzzy Systems, J. of Multi Criteria Decision Analysis, Inter. J.
of Machine Learning and Cybernetics, and alike.


