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Abstract

This paper presents an integrated image fusion and match score fusion of multispectral face images. The fusion of visible and long wave

infrared face images is performed using 2�-granular SVM which uses multiple SVMs to learn both the local and global properties of the

multispectral face images at different granularity levels and resolution. The 2�-GSVM performs accurate classification which is subsequently

used to dynamically compute the weights of visible and infrared images for generating a fused face image. 2D log polar Gabor transform and

local binary pattern feature extraction algorithms are applied to the fused face image to extract global and local facial features, respectively.

The corresponding match scores are fused using Dezert Smarandache theory of fusion which is based on plausible and paradoxical reasoning.

The efficacy of the proposed algorithm is validated using the Notre Dame and Equinox databases and is compared with existing statistical,

learning, and evidence theory based fusion algorithms.

� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Current face recognition systems capture faces of cooper-

ative individuals in a controlled environment as part of the

face recognition process. It is therefore possible to control the

lighting, pose, background, and quality of images. Under these

conditions, the performance of face recognition algorithms is

greatly enhanced. However, there is still a need for more robust

and efficient face recognition algorithms to address challenges

such as changes in illumination, variations in pose and expres-

sion, variations in facial features due to aging, and altered ap-

pearances due to disguise [1].

Face recognition algorithms generally use visible spectrum

images for recognition because they provide clear representa-

tion of facial features and face texture to differentiate between

two individuals. However, visible spectrum images also pos-

sess several other properties which affect the performance of
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recognition algorithms. For example, changes in lighting affect

the representation of visible spectrum images and can influ-

ence feature extraction. Other variations in face images such as

facial hairs, wrinkles, and expression are also evident in vis-

ible spectrum images and these variations increase the false

rejection rate of face recognition algorithms. To address the

challenges posed by visible spectrum images, researchers have

used infrared images for face recognition [2–5]. Among all the

infrared spectrum images, long wave infrared (LWIR) images

possess several properties that are complementary to visible

images. LWIR or thermal images are captured in the range of

8–12 �m. These images represent the heat pattern of the object

and are invariant to illumination and expression. Face images

captured in LWIR spectrum have less intra-class variation and

help to reduce the false rejection rate of recognition algorithms.

These properties of LWIR and visible images can be combined

to improve the performance of face recognition algorithms.

In literature, researchers have compared the performance

of visible and thermal face recognition using several face

recognition algorithms. These results show that for variation

in expression and illumination, thermal images provide better

recognition performance compared to visible images [2,6,7].
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Further, several fusion algorithms have been proposed to fuse

the information extracted from visible and LWIR face im-

ages at image level [8–11], feature level [10–12], match score

level [12], and decision level [12]. Information fusion of mul-

tispectral images provides better performance compared to ei-

ther visible or infrared spectrum images. However, research in

multispectral information fusion is relatively new and intel-

ligent techniques such as granular computing, support vec-

tor machine (SVM), and theory of evidence are not explored.

These intelligent techniques can enhance the recognition perfor-

mance by providing better generalization capabilities to handle

imprecise information.

In this paper, we propose algorithms to fuse LWIR and vis-

ible face images at image level and match score level. We first

propose the formulation of 2�-granular SVM (2�-GSVM) for

pattern classification which is used in the proposed image fu-

sion algorithm. The proposed image fusion algorithm learns the

properties of the multispectral face images at different resolu-

tion and granularity levels to determine optimal information and

combines them to generate a fused image. We then apply 2D log

polar Gabor [13] and local binary pattern [14] face recognition

algorithms to extract global and local features from the fused

image. The match scores obtained by matching these features

are fused using the proposed Dezert Smarandache (DSm) fu-

sion algorithm [15,16]. The proposed DSm match score fusion

algorithm is based on evidence theory which performs fusion

depending on the evidence and belief of the match scores. On

the Notre Dame [17,18] and Equinox [19] face databases, this

integrated hierarchical scheme yields verification accuracy of

more than 99.5%.

We have organized the proposed algorithms in four sections.

Section 2 describes the proposed formulation of 2�-GSVM.

In Section 3, we describe the proposed visible and infrared

face image fusion algorithm which dynamically and locally

computes the weights using 2�-GSVM to generate the fused

face image. We then describe the overview of DSm theory and

the proposed DSm match score fusion algorithm in Section 4.

Finally in Section 5, we combine the two levels of fusion to

present the integrated multilevel image fusion and match score

fusion algorithm. Section 6 describes the databases and existing

algorithms used for validation of the proposed algorithms. The

experimental results are summarized in Section 7.

2. 2�-granular support vector machine

SVM is widely used in classification problems because it is

designed to circumvent the overfitting problem [20–22] and is

generalized to optimally perform classification on new train-

ing data. In literature, different variants of SVM have been

proposed such as SVM, �-SVM, and dual �-SVM (2�-SVM).

These variants are designed to improve the classification ac-

curacy and address other challenges such as reduction in time

complexity and classification with disparate number of train-

ing samples per class. In our previous research [12], we used

2�-SVM for feature fusion, match score fusion, and expert fu-

sion. We observed that 2�-SVM provides better classification

accuracy compared to classical SVM and is computationally

more efficient. Recently, Tang et al. [23–26] applied the concept

of granular computing [27–30] to SVM and proposed GSVM

which is more adaptive to the data distribution in comparison

to SVM. Tang et al. have also shown that for several classifi-

cation applications, GSVM outperforms SVM both in terms of

classification accuracy and computational time. In this paper,

we extend the formulation to 2�-GSVM which embodies the

properties of both GSVM and 2�-SVM. We first describe the

formulation of 2�-SVM [22] followed by the granular model-

ing of 2�-SVM.

Let {xi, yi} be a set of N data vectors with xi ∈ Rd , yi ∈
(+1, −1), and i=1, . . . , N . xi is the ith data vector that belongs

to the binary class yi . According to Chew et al. [22] the objective

of training 2�-SVM is to find the hyperplane that separates two

classes with the widest margins, i.e.,

w�(x) + b = 0, (1)

subject to

yi(w�(xi) + b)�(� − �i), �, �i �0 (2)

to minimize,

1

2
‖w‖2 −

∑

i

Ci(�� − �i), (3)

where � is the position of the margin and � is the error param-

eter. �(x) is the mapping function used to map the data space

to the feature space and provide generalization for the decision

function that may not be a linear function of the training data.

Ci(�� − �i) is the cost of errors, w is the normal vector, b is

the bias, and �i is the slack variable for classification errors.

Slack variables are introduced to handle classes which cannot

be separated by a hyperplane. Let �+ and �− be the error pa-

rameters for training the positive and negative classes, respec-

tively. Using these, the error parameter, �, is calculated as

� =
2�+�−

�+ + �−
, 0 < �+ < 1 and 0 < �− < 1. (4)

Error penalty Ci is defined as

Ci =
{

C+ if yi = +1,

C− if yi = −1,
(5)

where

C+ =
[

n+

(

1 +
�+
�−

)]−1

, (6)

C− =
[

n−

(

1 +
�−
�+

)]−1

(7)

and n+ and n− are the number of training points for the posi-

tive and negative classes, respectively. Further, the Wolfe dual

formulation of 2�-SVM can be written as

L =
∑

i

�i −

⎡

⎣

1

2

∑

i,j

�i�jyiyjK(xi, xj )

⎤

⎦ , (8)

where i, j ∈ 1, . . . , N , �i, �j are the Lagrange multipliers and

K(·) is the kernel function. Finally, iterative decomposition
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training based optimization algorithm [22] is used to train the

2�-GSVM.

In this paper, we extend the formulation of 2�-SVM by

using the granular computing approach similar to Ref. [25].

Granular computing is a knowledge-oriented divide and con-

quer approach to problem solving Refs. [27–30]. In granu-

lar computing, information is divided into subproblems called

granules and these subproblems are solved individually at dif-

ferent granularity levels. Using this concept, 2�-GSVM is for-

mulated as follows.

Let the complete feature space be divided into k subspaces

with one 2�-SVM operating on each subspace. The ith 2�-SVM

is represented by 2�SVMi , where i = 1, 2, . . . , k. From each

of the subspace, we obtain the corresponding Li using Eq. (8).

We then compute the compound margin width W by using all

the Li values:

W =

∣

∣

∣

∣

∣

k
∑

i=1

ti

t
(2�SVMi :→ Li) − L0

∣

∣

∣

∣

∣

, (9)

where ti is the number of training data in the ith subspace and

t =
∑k

i=1 ti . 2�SVMi :→ Li represents the SVM operating

on the ith subspace. 2�-SVM learning yields Li at local level,

and L0 is obtained by learning another 2�-SVM on the com-

plete feature space at global level. This equation provides the

margin width associated to a hyperplane. There are different

methods to divide the feature space and hence different hyper-

planes associated with each of the granule generation method

can be obtained. We compute the classification accuracy of all

the hyperplanes on the training data and then select the hyper-

plane that optimally classifies the training data. In contrast to a

single SVM that deals with large parameter space and results

in large training time, 2�-GSVM uses multiple SVMs to learn

both the local and global properties of the training data at dif-

ferent granularity levels. This 2�-GSVM is then used for fusing

multispectral face images.

3. Multispectral face image fusion using 2�-GSVM

In multispectral face recognition, visible images provide the

reflectance property and LWIR images provide the thermal

property. In 2�-GSVM based image fusion, we combine these

properties to generate a fused image which possess both the

properties and can be used to improve the recognition per-

formance. Although there are several multispectral face im-

age fusion algorithms in literature, they have some limitations

which affect the face recognition performance. Genetic algo-

rithm based fusion proposed by Bebis et al. [31] suffers from

making a good choice of fitness function. Fusion algorithm

proposed by Kong et al. [4] suffers from the empirical con-

stant weights which are assigned to the wavelet coefficients of

visible and LWIR images. In real world applications, weights

should be dynamically and locally assigned for optimal mul-

tispectral information fusion. In this section, we propose the

multispectral face image fusion algorithm which dynamically

and locally computes the weights for fusion using 2�-GSVM.

Fig. 1 illustrates the steps involved in the proposed image

fusion algorithm. The algorithm is divided into two steps: im-

age registration and image fusion.

3.1. Mutual information based multispectral face image fusion

Visible and infrared images captured at different time in-

stances can have variations due to camera angle, expression,

and geometric deformations. To optimally fuse two multispec-

tral images, we first need to minimize the linear and non-linear

differences between the two images. In this section, we pro-

pose the use of mutual information based registration algorithm

for registering visible and thermal face images. Mutual infor-

mation is a concept from information theory in which statis-

tical dependence is measured between two random variables.

Researchers in medical imaging have used mutual information

based registration algorithms to effectively fuse images from

different modalities such as CT and MRI [32,33]. Registration

of multispectral face images is described as follows.

Let V and I be the input visible and infrared face images for

registration. Mutual information between the two face images

can be represented as

M(V, I) = H(V ) + H(I) − H(V, I), (10)

H(·) is the entropy of the image and H(V, I) is the joint en-

tropy. Registering V with respect to I requires maximization

of mutual information between I and V, thus maximizing the

entropy H(V ) and H(I), and minimizing the joint entropy

H(V, I). Mutual information based registration algorithms are

sensitive to changes that occur in the distributions as a result of

difference in overlap regions. To address this issue, Studholme

et al. [34] proposed normalized mutual information which can

be represented as

NM(V , I ) =
H(V ) + H(I)

H(V, I)
. (11)

The registration is performed on a transformation space, T, such

that

T =
[

a b 0

c d 0

e f 1

]

, (12)

where a, b, c, d are the shear, scale, and rotation parameters,

and e, f are the translation parameters. Using the normalized

mutual information, we define a search strategy to find the

transformation parameters, T ∗, by exploring the search space,

T:

T ∗ = arg max
{T }

{NM(I, T (V ))}. (13)

Multispectral face images V and I are thus registered using

the transformation parameters T ∗. This registration algorithm

is linear in nature. To accommodate the non-linear variation in

face images, we apply multiresolution image pyramid scheme

in which we first build Gaussian pyramid of both visible and

thermal face images. Registration parameters are estimated at

the coarsest level and used to warp the face image in the next

level of the pyramid. The process is iteratively repeated through

each level of the pyramid and a final transformed visible face
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Fig. 1. Schematic diagram of the proposed 2�-GSVM image fusion algorithm.

Fig. 2. Example of visible and infrared image registration on the Notre Dame

face database [18]. Visible image is registered with respect to the LWIR

image. Size of detected visible face image is 855 × 1024 and infrared face

image is 115 × 156.

image is obtained at the finest pyramid level. In this manner,

we handle the large global variations at the coarsest resolu-

tion level and local non-linear variations at the finest resolution

level. Fig. 2 shows examples of the registration algorithm in

which visible face image is registered with respect to LWIR

face image.

3.2. Proposed 2�-GSVM image fusion algorithm

In the proposed face image fusion algorithm, registered

visible and infrared face images are fused using 2�-GSVM

and discrete wavelet transform (DWT) [35]. The fusion al-

gorithm uses the activity level, a, of face images which is

defined as

a =

√

√

√

√

√

1

XY

⎡

⎣

X−1
∑

i=0

Y−1
∑

j=1

{(V (i, j) − V (i, j − 1)}2 +
Y−1
∑

j=0

X−1
∑

i=1

{(V (i, j) − V (i − 1, j)}2

⎤

⎦, (14)

where V is the visible face image, and X and Y are the rows

and columns of the face image, respectively. The proposed fu-

sion algorithm is divided into two parts: (1) training and (2)

classification and fusion.

Training 2�-GSVM: We learn the 2�-GSVM for image fusion

by using the activity levels of labeled visible and infrared train-

ing face images. The training algorithm is described as follows:

Step 1: Visible and infrared training face images are decom-

posed using DWT to obtain three-level approximation, hori-

zontal, vertical, and diagonal subbands.

Step 2: Let VLLj
, VLH j

, VHLj
, and VHH j

be the subbands

of visible face image where j =1, 2, 3 represents the decompo-

sition levels. Similarly, let ILLj
, ILH j

, IHLj
, and IHH j

be the

subbands of infrared face image corresponding to each decom-

position level, j. Each subband of both visible and infrared face

images is divided into windows of size 8 × 8 and the activity

level of each window is computed using Eq. (14).

Step 3: The activity levels of all labeled training face images

are used as input to 2�-GSVM. In training, two 2�-GSVMs are

learned, one for visible face images and another for infrared

face images.

Step 4: 2�-GSVM trained for visible images classifies the

activity levels of visible spectrum face images as Good or +1

and Bad or −1. Similarly, 2�-GSVM trained for infrared face

images classifies the activity levels of infrared face images into

Good or Bad class.

Classification and fusion: We classify the properties of vis-

ible and infrared face images using trained 2�-GSVMs. This

classification is used to dynamically compute the weights of

visible and infrared face images in multispectral image fusion.

Step 1: Visible and infrared face images of an individual

are provided as input. Similar to Steps 1 and 2 of the training

algorithm, both the input face images are decomposed into
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three-level DWT and activity levels of 8×8 windows are com-

puted. Let aV and aI be the activity levels computed from vis-

ible and infrared face images, respectively.

Step 2: 2�-GSVM classifier is used to classify the activity

levels of different subbands of visible face images as Good or

Bad. A binary decision matrix, dV , is generated which contains

value 1 if the activity level is Good and 0 if the activity level

is Bad.

Step 3: Similar to Step 2, activity levels of infrared face image

are classified and a binary decision matrix, dI , is generated.

Step 4: Weight matrices �V and �I are computed using

binary decision matrices (dV and dI ) and the following three

conditions:

(1) If dV (i) = dI (i) = 1, then �V (i) = �I (i) = 0.5.

(2) If dV (i) = 1 and dI (i) = 0, then �V (i) > �I (i) and

�V (i) =
|aV (i) + 2aI (i) − aImedian

|
aV (i) + aI (i)

, (15)

�I (i) =
|aImedian

− aI (i)|
aV (i) + aI (i)

. (16)

(3) If dV (i) = 0 and dI (i) = 1, then �V (i) < �I (i) and

�V (i) =
|aVmedian

− aV (i)|
aV (i) + aI (i)

, (17)

�I (i) =
|aI (i) + 2aV (i) − aVmedian

|
aV (i) + aI (i)

, (18)

where i is the window count, and aVmedian
and aImedian

are the

median values of aV and aI matrices, respectively. Further,

in all three cases, �V (i) + �i(i) = 1.

In condition 1, the activity levels of both visible and infrared

image windows are classified as Good and hence equal weights

are assigned. Condition 2 states that if the activity level of

window corresponding to visible face image is classified as

Good and the activity level of the window corresponding to

infrared face image is classified as Bad, then higher weight

is assigned to the visible face image window. In condition 3,

higher weight is assigned to the infrared face image window

because 2�-GSVM classifies the activity level of visible face

image window as Bad and the activity level of infrared face

image window as Good.

Step 5: Visible and infrared face images are then fused using

Fj8×8(i) = �V (i)Vj8×8(i) + �I (i)Ij8×8(i), (19)

where Fj is the fused subband, j represents the approximate,

vertical, horizontal, and diagonal subbands, subscript 8 × 8

denotes that the fusion is performed at window level of size

8 × 8, and i represents the window count.

Step 6: Finally, inverse DWT is applied on fused subbands

to generate the fused multispectral face image, F. Fig. 3 shows

an example of visible, infrared, and fused face images of an

individual.

Registered Visible 

Face Image

LWIR

Face Image

Fused

Face Image

Fig. 3. Sample result of the proposed image fusion algorithm.

4. Match score fusion using DSm theory

In multimodal biometrics, researchers have proposed sev-

eral match score fusion algorithms such as AND/OR rule [36],

Sum rule [36], and SVM fusion [37]. Another mathematical

paradigm of information fusion is based on the theory of

evidence. Dempster Shafer theory (DST) [38] based fusion

algorithm is one example of this paradigm in which uncertain

and fuzzy information are efficiently fused. In multimodal

biometrics, it has been shown that DST based fusion algo-

rithms perform better compared to existing fusion algorithms

[39]. However, DST has some limitations as reported by Zadeh

[40–42], Dubois and Prade [43], and Voorbraak [44]. Re-

searchers have shown that results for DST are not trustworthy

when conflict between different sources is large. Other limi-

tations related to Dempster rule of combination are reported

in Ref. [15]. Recently, DSm theory based fusion algorithm

[15,16] has been proposed to circumvent the limitations of

other evidence theory based fusion algorithms. DSm theory is

a powerful mathematical model for information fusion which

includes both Bayes theory and DST as special cases. In this

section, we first present a brief overview of DSm theory and

hybrid DSm rule of combination [16] followed by the proposed

match score fusion algorithm.

4.1. Overview of DSm theory

DSm theory is a powerful tool for representing and fusing un-

certain or conflicting knowledge. It can solve complex static or

dynamic fusion problems using plausible and paradoxical rea-

soning [15,16]. Since identity verification is a two class prob-

lem with the classes being genuine and impostor, we explain

DSm theory for a two class problem.

Let �={�1, �2} be the frame of discernment which consists

of a finite set of exhaustive and mutually exclusive hypothesis.

Hyperpower set of the frame of discernment is defined as D�=
{∅, �1, �2, �1 ∪ �2, �1 ∩ �2}. A mapping m(·) on � is defined

as m(·) = D� → [0, 1], such that

∑

A∈D�

m(A) = 1, (20)

m(A) is called the generalized basic belief assignment (gbba)

of A and m(∅) = 0. Further, a generalized belief function Bel
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is a mapping function Bel : D� → [0, 1] such that

Bel(A) =
∑

X⊆A,X∈D�

m(X). (21)

More specifically,

Bel(A)
�,D�

y,t [Ey,t ](w0 ∈ A) = x. (22)

This equation denotes the degree of belief x of the classifier y

at time t when w0 belongs to A and A ∈ D�. Belief is based

on evidential corpus Ey,t held by y at time t. To simplify, gen-

eralized belief function can also be written as Bel(A). Further,

generalized belief function, Bel, uniquely corresponds to gbba

m and vice versa.

For fusing two information sources, X and Y, the DSm rule

of combination [16] is defined as

mM(�)(A) = �(A)[S1(A) + S2(A) + S3(A)], (23)

where M(�) is the model over which DSm theory operates and

�(A) is the characteristic non-emptiness function of A which

is 1 if A /∈ ∅ and 0 otherwise. S1(A), S2(A), and S3(A) are

defined as

S1(A) =
∑

(X,Y∈D�, X∩Y=A)

m1(X)m2(Y ),

S2(A) =
∑

(X,Y∈�, [	=A]∨[(	∈�)∧(A=It )])
m1(X)m2(Y ),

S3(A) =
∑

(X,Y∈D�, X∪Y=A, X∩Y∈�)

m1(X)m2(Y ), (24)

where It is total ignorance and is the union of all �i (i = 1, 2),

i.e., It = �1 ∪ �2. � = {�, 
} is the set of all elements of

D� which are empty under the constraints of some specific

problem, and 
 is the empty set. 	=u(X)∪u(Y ), where u(X)

is the union of all singletons �i that compose X and Y. Here,

S1(A) corresponds to the classical DSm rule on the free DSm

model [15], S2(A) represents the mass of all relatively and

absolutely empty sets which is transferred to the total or relative

ignorance, and S3(A) transfers the sum of relative empty sets

to the non-empty sets. An excellent description of DSm theory

is presented in Ref. [16].

Probability based approaches have limitations because they

deal with basic probability assignment m(·) ∈ [0, 1] and

m(�1)+m(�2)=1. Further, DST deals with basic belief assign-

ment m(·) ∈ [0, 1] such that m(�1)+m(�2)+m(�1 ∪�2)=1. In

contrast, DSm theory is more generalized and deals with belief

functions associated with the generalized belief assignment

such that m(�1) + m(�2) + m(�1 ∪ �2) + m(�1 ∩ �2) = 1.

4.2. Proposed multimodal match score fusion algorithm

In this section, we propose a novel match score fusion al-

gorithm using DSm theory. Fig. 4 shows the steps involved in

the proposed match score fusion algorithm for a single image.

Two match scores are computed by matching the global fea-

tures and local features extracted from probe and gallery face

images. These two match scores are fused using DSm theory.

We first define:

• Frame of discernment: � = {�genuine, �impostor}.
• Dedekind lattice: D� = {�genuine, �impostor , �genuine ∪

�impostor , �genuine ∩ �impostor}.

Let s1 and s2 be the two match scores computed from two face

recognition algorithms. Let us assume that the distribution of

match scores to an element of D� is a Gaussian distribution

p(si, �ij , �ij ) =
1

�ij

√
2

exp

[

−
1

2

{

si − �ij

�ij

}2
]

, (25)

where �ij and �ij are the mean and standard deviation of the

ith classifier corresponding to the jth element of D�. We use

this Gaussian distribution to compute the gbba,

mi(·) = D�\{�genuine ∪ �impostor} → [0, 1].

Since in biometrics, a match score can only belong to genuine

(�genuine), impostor (�impostor ), or conflicting region (�genuine∩
�impostor ), we set mi(�genuine ∪�impostor)=0.001 and compute

the remaining gbbas as follows:

mi(j) =
p(si, �ij , �ij )�ij

∑|D�|−1
j=1 p(si, �ij , �ij )�ij

, (26)

where �ij is the prior of classifier i corresponding to the jth

element of D�\{�genuine ∪ �impostor}. We have used �ij as the

verification accuracy computed on the training database and its

value lies in the range of (0, 1). Gbbas of the two classifiers

m1(·) and m2(·) are computed and fused using

mf used = m1 ⊕ m2, (27)

where ⊕ represents the hybrid DSm rule of combination defined

in Eq. (23), Section 4.1. Finally, threshold T is used to classify

the decision as accept or reject:

Decision =
{

accept if mf used �T ,

reject otherwise.
(28)

To extend this algorithm to multispectral face images, we sep-

arately apply the feature extraction algorithms to the visible

face image and the infrared face image. As shown in Fig. 5,

we extract the global facial features using 2D log polar Gabor

transform [13] and the local facial features using local binary

pattern [14], and then match these features to compute the cor-

responding match scores. The two match scores for the visible

face image are fused using the proposed DSm fusion algorithm.

Similarly, the two match scores for the infrared face image

are also fused to generate the fused match score. Finally, the

fused match scores of the visible face image and the infrared

face image are combined to compute a composite match score

for multispectral face images. A decision of accept or reject is

made using the composite match score.
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Fig. 4. Block diagram of the proposed DSm match score fusion algorithm in which match scores obtained from two classifiers are fused.
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Fig. 5. Steps involved in the proposed DSm match score fusion algorithm. In this case, match scores obtained by applying the two classifiers on multispectral

face images are fused.

5. Integration of image fusion and match score fusion

The proposed image and match score level fusion algorithms

are integrated to further improve the verification performance.

Fig. 6 shows the block diagram of the integrated multilevel fu-

sion algorithm. Visible and infrared face images are first fused

using the proposed 2�-GSVM image fusion algorithm described

in Section 3. 2D log polar Gabor transform [13] and local bi-

nary pattern [14] feature extraction algorithms are then applied

on the fused multispectral face image to extract global and lo-

cal facial features. Match scores computed by matching these

features are fused using the proposed DSm match score fusion

algorithm described in Section 4.

6. Databases and existing algorithms used for validation

To validate the proposed fusion algorithms, we used the

Notre Dame [17,18] and Equinox/NIST [19] multispectral

face databases. In addition, we used 2D log polar Gabor trans-

form [13] and local binary pattern algorithms [14] for face

verification. For comparing the performance of the proposed

algorithms, we used several existing image fusion and match

score fusion algorithms. In this section, we briefly describe the

details of the databases and algorithms used in our experiments.

6.1. Databases used for validation

• Notre Dame face database: Notre Dame face database

[17,18] contains LWIR and visible images from 159 classes

with variations in expression, lighting, and time lapse. We

have chosen three visible and LWIR face image with neu-

tral expression for training database, one neutral visible and

LWIR image for gallery database, and the remaining images

comprise the probe data set. Table 1 shows the details of

training, gallery, and probe images used in the experiments.

• Equinox face database: Equinox face database [19] contains

LWIR, medium wave infrared, short wave infrared, and vis-

ible face images pertaining to 95 individuals. LWIR images

are captured at 8–12 �m, medium wave infrared images at

3–5 �m, and short wave infrared images at 0.9–1.7 �m. The



R. Singh et al. / Pattern Recognition 41 (2008) 880 –893 887

2ν- GSVM 

Fusion

LWIR 

Face Image

Visible 

Face Image

Fused 

Face Image
2ν- GSVM 

Fusion

2D log Polar
Gabor Feature

Matching

Generalized
Basic Belief
Assignment

DSm Match
Score Fusion

and
ClassificationLocal Binary

Pattern Feature
Matching

Accept/
Reject

Generalized
Basic Belief
Assignment

Fusion of Multispectral Images Fusion of Match Scores

Fig. 6. Steps involved in the proposed multilevel image fusion and match score fusion algorithm.

Table 1

Number of visible and infrared image pairs in the training, gallery, and probe

databases

Face database Number of visible and infrared image pairs in

Training database Gallery database Probe database

Notre Dame 477 159 1815

Equinox 285 95 18 715

images are captured under different illumination conditions

and contain variations in expression and glasses. In our re-

search, we have used only LWIR images and visible images.

The number of LWIR and visible images per class vary from

43 to 516. We chose three visible and LWIR images with neu-

tral expression and without glasses for training, one LWIR

and visible image with neutral expression, uniform illumi-

nation, and no glasses for gallery, and the remaining images

as probe.

6.2. Face recognition algorithms

We first detect the face region from input images. Visible

face images are detected using the triangle based face detec-

tion algorithm [45] whereas a thresholding based face detection

algorithm [4] is applied to detect LWIR face images. Global

and local facial features are extracted from these detected face

images using the face recognition algorithms described below.

• 2D log polar Gabor transform: In the 2D log polar Gabor

transform based face recognition algorithm, the face image

is transformed into polar coordinates and textural features

are extracted using the 2D log polar Gabor transform [13].

These features are matched using the Hamming distance to

generate match scores.

• Local binary pattern: In this algorithm, a face image is di-

vided into several regions and weighted LBP features are

extracted to generate a feature vector [14]. Matching of two

LBP feature vectors is performed using weighted Chi square

distance measure algorithm.

6.3. Existing fusion algorithms

To compare the performance of the proposed 2�-GSVM

based image fusion algorithm, we chose image fusion algo-

rithms proposed by Kong et al. [4] and Singh et al. [10]. Both

the algorithms use DWT to fuse infrared and visible face im-

ages. To compare the performance of the proposed DSm based

match score fusion algorithm, we chose four existing fusion al-

gorithms, Product rule [36], Sum rule [36], SVM fusion [37],

and DST fusion [39]. Product rule and Sum rule are based on

statistical rules, SVM fusion algorithm is a learning based algo-

rithm, and DST fusion algorithm is based on evidence theory.

7. Experimental validation of the proposed algorithms

In this section, we perform the experiments to validate the

proposed image fusion and match score fusion algorithms.

Using the training images, we train both 2�-GSVM image fu-

sion algorithm and DSm match score fusion algorithm. For

2�-GSVM learning and classification, we used the radial basis

function (RBF) kernel with RBF parameter as 4. The perfor-

mance is evaluated in terms of verification accuracy at 0.01%

false accept rate (FAR). The experimental validation is divided

into four parts:

(1) Validation of the proposed 2�-GSVM image fusion

algorithm.

(2) Validation of the proposed DSm match score fusion

algorithm.

(3) Validation of the integrated multilevel image fusion and

match score fusion algorithm.
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Table 2

Verification performance of the proposed 2�-GSVM and existing image fusion algorithms at 0.01% FAR

Face database Recognition algorithm Verification accuracy (%)

Visible image LWIR image Kong image fusion [4] Singh image fusion [10] Proposed image fusion

Notre Dame 2D log polar Gabor 89.36 88.09 86.74 91.88 95.85

Local binary pattern 88.20 87.44 85.87 91.79 94.80

Equinox 2D log polar Gabor 78.91 82.75 80.83 90.06 94.98

Local binary pattern 76.80 81.52 80.69 89.93 94.71

(4) Statistical evaluation of the proposed fusion algorithms

using half total error rate (HTER).

7.1. Validation of the proposed 2�-GSVM image fusion

algorithm

The performance of the proposed image fusion algorithm is

evaluated using the Notre Dame and Equinox face databases.

We compared the performance with two existing multispec-

tral face image fusion algorithms referred to as Kong image

fusion [4] and Singh image fusion [10]. For evaluation, we

separately computed the verification accuracies of visible face

image and LWIR face image using both 2D log polar Ga-

bor and local binary pattern face verification algorithms. The

third and fourth columns of Table 2 summarize the verification

performance of visible face image and LWIR face image, re-

spectively, using both the verification algorithms. These results

establish the baseline for evaluating and comparing the per-

formance of fusion algorithms. We then compute the verifica-

tion accuracies with the proposed 2�-GSVM multispectral face

image fusion algorithm and existing image fusion algorithms.

The results summarized in Table 2 show that the proposed im-

age fusion algorithm outperforms both the existing fusion algo-

rithms by at least 3.9% for the Notre Dame database and 4.9%

for the Equinox database. ROC plots in Figs. 7 and 8 show

the results for the Notre Dame and Equinox face databases,

respectively.

The proposed 2�-GSVM image fusion algorithm performs

correct classification of multispectral face information at dif-

ferent levels of granularity which is subsequently used for

computing the dynamic weights of visible and LWIR face im-

ages. This granular learning results in better generalization and

fusion of high entropy visible and LWIR face features. Fur-

ther, as shown in Fig. 9, fused face images generated from the

proposed image fusion algorithm provide more invariance to

illumination compared to the visible images. The fused images

also provide more distinguishing information compared to the

LWIR face images. These properties of the proposed 2�-GSVM

image fusion algorithm lead to improved face verification

performance.

7.2. Validation of the proposed DSm match score fusion

algorithm

To validate the performance of the proposed DSm match

score fusion algorithm, we compute the composite match score
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Fig. 7. ROC plots of the proposed 2�-GSVM and existing image fusion

algorithms on the Notre Dame face database. Results are computed using (a)

2D log polar Gabor (b) local binary pattern based verification algorithms.

as described in Section 4. First the match score is obtained

from the visible and the LWIR face images. Note that these

images are not fused. However, as shown in Fig. 5, the fusion

occurs at match score level. Next, the fused match scores ob-

tained from each image are combined using the proposed DSm

algorithm to generate the composite match score. The verifi-

cation accuracies are summarized in Table 3 and Fig. 10. On

both the databases, the proposed DSm match score fusion algo-

rithm yields more than 98% accuracy. On the Notre Dame face
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Fig. 8. ROC plots of the proposed 2�-GSVM and existing image fusion

algorithms on the Equinox face database. Results are computed using (a) 2D

log polar Gabor (b) local binary pattern based verification algorithms.

database, the proposed algorithm provides at least 1.24% bet-

ter performance compared to the second best DST based match

score fusion algorithm [39]. On the Equinox database, the pro-

posed algorithm provides 1.57% and 3.03% better verification

performance compared to DST and SVM fusion algorithms,

respectively.

The performance of existing match score fusion algorithms

decreases when two face recognition classifiers yield conflicting

decisions. For example the classifier using global features may

make a decision to accept and the classifier using local features

may make a decision to reject. In such cases, the proposed DSm

match score fusion algorithm operates on the intersection region

(�genuine ∩ �impostor) to make an optimal decision using the

prior information of classifiers. Existing statistical and learning

based fusion algorithms including DST fusion algorithm do

not account for the conflicting region. Hence, the plausible and

paradoxical reasoning technique of DSm theory provides better

verification performance.

Fig. 9. Results of the proposed 2�-GSVM image fusion algorithm on the

Equinox face database [19].

7.3. Validation of integrated multilevel image and match

score fusion algorithm

In previous experiments, we have established that image

fusion using 2�-GSVM improves the verification performance.

Also at match score level, the fusion using DSm theory im-

proves the verification accuracy even when the multispectral
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Table 3

Verification performance of the proposed DSm and existing match score fusion algorithms at 0.01% FAR

Face database Verification accuracy (%)

Product rule fusion [36] Sum rule fusion [36] SVM fusion [37] DST fusion [39] Proposed DSm fusion

Notre Dame 95.07 97.12 97.46 97.58 98.82

Equinox 93.20 94.33 95.05 96.51 98.08
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Fig. 10. ROC plots of the proposed DSm match score fusion and existing

match score fusion algorithms on the (a) Notre Dame face database [18] (b)

Equinox face database [19].

images are not fused. In this section, we integrate both im-

age fusion and match score fusion algorithms as described in

Section 5 to evaluate the face verification performance. The

validation results of the integrated multilevel fusion algorithm

are summarized in Table 4. The integrated fusion algorithm

yields 99.91% verification accuracy on the Notre Dame face

database and 99.54% on the Equinox face database. The

results also show that the integration of fusion algorithms

further improves the verification performance by at least 1.08%

compared to only image fusion or only match score fusion.

High verification accuracies (> 99.5%) on the Notre Dame and

Equinox face databases show the robustness of the proposed

integrated fusion algorithm to the variations in illumination,

expression, and occlusion due to glasses. The computational

time of the proposed integrated image and match score fusion

algorithms including image registration, feature extraction and

matching is 4.3 s on a P-IV, 3.2 GHz computer under MATLAB

environment.

7.4. Statistical evaluation of proposed image fusion and

match score fusion algorithms

The performance of a biometric system greatly depends on

the database size and the images present in the database [46].

It cannot be represented completely by ROC plots and verifi-

cation accuracy. To systematically evaluate the performance,

Bengio and Marièthoz [47] have proposed statistical test us-

ing HTER and confidence intervals [47]. In this section, we

perform statistical evaluation of the proposed image fusion

and match score fusion algorithms using HTER. HTER is

defined as,

HTER =
FAR + FRR

2
. (29)

Confidence intervals are computed around HTER as HTER±�·
Z�/2. � and Z�/2 are computed using Eqs. (30)

and (31) [47]

� =
√

FAR(1 − FAR)

4 · NI
+

FRR(1 − FRR)

4 · NG
, (30)

Z�/2 =
{

1.645 for 90% CI,

1.960 for 95% CI,

2.576 for 99% CI,

(31)

NG is the total number of genuine scores and NI is the total

number of impostor scores.

Table 5 summarizes the results of this statistical evalua-

tion using false accept and false reject rates. We have com-

puted these statistical values at 0.01% FAR. This statistical

test shows that on a database similar to the Notre Dame with

any number of classes, HTER of the proposed integrated fu-

sion algorithm will lie between 0.05 ± 0.06 with 95% confi-

dence. Similar results have been obtained with the Equinox face

database.
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Table 4

Verification performance of the proposed integration of image fusion and match score fusion algorithms at 0.01% FAR

Face database Verification accuracy (%)

Proposed 2�-GSVM image fusion Proposed DSm match score fusion Integrated image and match score fusion

2D log polar Gabor Local binary pattern

Notre Dame 95.85 94.80 98.82 99.91

Equinox 94.98 94.71 98.08 99.54

Table 5

Confidence interval around HTER of the proposed 2�-GSVM image fusion, DSm match score fusion, and integrated multilevel fusion algorithms

Face database Fusion algorithms HTER (%) Confidence interval (%) around HTER for

90% 95% 99%

Notre Dame Image fusion with 2D log polar Gabor 2.08 0.68 0.81 1.07

Image fusion with local binary pattern 2.61 0.76 0.91 1.19

Match score fusion 0.59 0.37 0.44 0.58

Integrated image fusion and match score fusion 0.05 0.10 0.12 0.16

Equinox Image fusion with 2D log polar Gabor 2.52 0.26 0.31 0.41

Image fusion with local binary pattern 2.65 0.27 0.32 0.42

Match score fusion 0.97 0.17 0.20 0.26

Integrated image fusion and match score fusion 0.24 0.08 0.10 0.13

8. Conclusion

Visible and long wave infrared images provide comple-

mentary properties which can be combined to improve the

performance of face recognition. In this paper, we proposed

image fusion and match score fusion algorithms to fuse in-

formation obtained from multispectral face images. We first

apply mutual information based registration algorithm to reg-

ister multispectral face images and then fuse the images using

the proposed 2�-granular support vector machine. The fused

image contains the properties of both visible and long wave

infrared images and can efficiently be used for face recogni-

tion. We next proposed the DSm match score fusion algorithm

to fuse match scores generated from multiple classifiers. These

match scores can be generated by applying multiple classifiers

on one image or by applying classifiers on multispectral face

images. The proposed match score fusion algorithm is based

on the theory of evidence and performs efficiently even when

visible and long wave infrared images provide conflicting

decisions. The proposed image fusion and match score fusion

algorithms are then integrated to further improve the face

recognition performance. We validated the performance of the

proposed image fusion algorithm, match score fusion algo-

rithm, and the integrated image fusion and match score fusion

algorithms using the Notre Dame and Equinox face databases.

Experimental results show that the proposed image fusion and

match score fusion algorithms outperform existing fusion algo-

rithms. Results and statistical evaluation further show that the

proposed integrated image and match score fusion algorithm

yield best performance among all the proposed and existing

fusion algorithms.
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