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Enhanced non-Markovian behavior 
in quantum walks with Markovian 
disorder
N. Pradeep Kumar1, Subhashish Banerjee2 & C. M. Chandrashekar1,3

Non-Markovian quantum effects are typically observed in systems interacting with structured 
reservoirs. Discrete-time quantum walks are prime example of such systems in which, quantum 
memory arises due to the controlled interaction between the coin and position degrees of freedom. 
Here we show that the information backflow that quantifies memory effects can be enhanced when the 
particle is subjected to uncorrelated static or dynamic disorder. The presence of disorder in the system 
leads to localization effects in 1-dimensional quantum walks. We shown that it is possible to infer about 
the nature of localization in position space by monitoring the information backflow in the reduced 
system. Further, we study other useful properties of quantum walk such as entanglement, interference 
and its connection to quantum non-Markovianity.

Quantum walks describe the coherent evolution of a quantum particle coupled to an external environment which 
in simple form can be a position space. It is formally the quantum analogue of classical random walk1–5. The 
ability of quantum walks to exploit certain non-trivial quantum effects such as interference and entanglement 
has led to a plethora of application in quantum information processing tasks6,7. The most important among these 
is the capability to perform universal quantum computation8,9 and exponential speed up10,11 to some quantum 
algorithms12–15. Another important application of quantum walks is quantum simulations. The inherent control-
lable nature of these systems allows us to gain a wealth of knowledge by simulating quantum phenomenon such 
as photosynthesis16, relativistic quantum effects5,17–25, localization26–30, among many others. In addition to this, 
the rich dynamical structure of quantum walks serves as a test bench for studying a wide class of open quantum 
system dynamics31–33.

With progress in the development of quantum coherent devices and the rapid advancement in controlling 
these systems effectively, we are now witnessing both proof of principle experiments of quantum walks and per-
formance of useful quantum simulations in different physical systems such as cold atoms34, ion traps35,36 and in 
circuit-QED architectures37. In view of these recent developments in engineered quantum systems it is imperative 
to carefully study the interplay of various quantum features and its effects on quantum dynamics. In quantum 
walks which evolves in position space, the reduced dynamics of the particle obtained after tracing out the position 
degrees of freedom has been shown to exhibit certain features of quantum non-Markovianity such as information 
backflow38,39. Recently, in39–41 the effect of decoherence caused by the interaction of the particle with an external 
environment or due to the presence of broken links in position lattice has been shown to reduce the effects of 
non-Markovianity. Furthermore, in42 classical non-Markovian random process such as the Elephant random 
walk has been generalized to the quantum setting.

In this work we study the intricate connections between quantum interference, entanglement and dynamical 
properties like non-Markovian quantum effects arising in the time evolution of quantum walks39–42. While quan-
tum interference is understood to be the most fundamental resource that powers quantum walks, the complexity 
in tracking the changes and measuring it unambiguously has prevented a direct handle for studying it in quantum 
systems. However, recent progress43 has been made to estimate interference in quantum walks, which will be used 
here to make a comparative study of other resources such as entanglement and memory effects in quantum walk 
evolution due to non-Markovian dynamics.

The major roadblock in the large scale implementation of quantum walks is the inevitable presence of deco-
herence caused by the ubiquitous coupling between the system and the environment. In addition to this, the 
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presence of unavoidable systematic errors that arises due to imperfect control operations generic to many quan-
tum information processing systems44,45 also impends the scalability of quantum walks. It is hence indispensable 
to understand the impact of these non-idealities on the dynamical properties of quantum walks. In view of that, 
we study the interplay of entanglement and non-Markovian memory effects in the presence of static and dynamic 
disorder. This in turn leads to either Anderson localization (spatial) or weak localization (temporal) of the walker 
in the position space. An interesting connection between localization and quantum non-markovianity has been 
studied in the context of continuous-time quantum walks46. The results show that Anderson localization appears 
only when the evolution is subjected to non-Markovian regime of the noise. Alternatively, it was identified that 
Anderson localization induces non-Markovian features in dynamics47. In this work we show that, by introducing 
uncorrelated time and position dependent disorder in discrete-time quantum walk evolution, the memory effects 
in the system can be enhanced. This further allows us to probe the nature of localization by observing only the 
reduced dynamics of the particle.

Quantum Walks
Quantum walk on 1-D lattice is defined on the Hilbert spaces c  spanned by the coin basis states which serve as 
the internal degrees of freedom ↑  and ↓ , and p  represents the external degrees of freedom, such as the posi-
tion state which is spanned by the basis states x , where ∈ x . The state of the complete quantum system will be 
represented on the tensor product space c p⊗   and the initial state will be in the form,

δ δ|Ψ = |↑ + |↓ ⊗ | = .η−⟩ ⟩ ⟩ ⟩e x(0) cos( ) sin( ) 0 (1)
i

here, δ η,  specifies an arbitrary initial state of the two level particle (coin) and the the position state =i 0  denotes 
the origin of the walker. The time evolution for the quantum walk is generated by the unitary transformations, 
coin operation followed by the shift operator. The action of the coin operator
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is only on the coin subspace and drives each internal state of the particle to superposition states. The coin operator 
specified above can be represented by a combination of Pauli matrices C en

i n
,

ˆ=θ
θ σ− →

, where n̂ is the unit vector 
which defines the direction. Here we have chosen nn xˆ ˆ=  and hence =θ

θσ−C ex
i

,
x, as defined in Eq. (2), rotates the 

internal state of the particle in the y − z plane of the Bloch sphere by the specified angle θ. Depending on the 
internal state of the particle, the shift operator,

 
ˆ ∑ ∑= ↓ ↓ ⊗ − + ↑ ↑ ⊗ +

∈ ∈
S x x x x1 1 ,

(3)x x

shifts the particle in superposition of position space. The overall unitary operator applied at every time step is 
ˆ ˆ ˆ= ⊗θ θU S C I( ) and the state at any time t will be given by,

ψ δ η|Ψ = Ψ = | ⊗ | = .θ θ⟩ ˆ ˆ ⟩ ⟩[ ]t U U x( ) (0) ( , ) 0 (4)
t t

Results
Entanglement, Interference and non-Markovianity. Our primary interest is to study the reduced 
dynamics of the two level particle, in the coin space, that is coupled to the position degrees of freedom. To under-
stand the intricate features in the quantum dynamics in the coin space we have computed quantities such as 
entanglement, interference and non-Markovianity using suitable measures. The entanglement of the particle with 
the position space is measured using Von-Neumann entropy,

ρ ρ=ρ
S t t t( ) tr[ ( ) log { ( )}] (5)c c2

c

where t tr t( ) [ ( )]
c pρ ρ=  is the reduced state of the particle.

To compute the amount of interference present in the coin space, we can use the coherence measure, which is 
the absolute sum of the off-diagonal elements of the reduced state of the particle43,48,

∑ ρ= | |.ρ

≠
I t t( ) ( )

(6)i j
c
ij

c

In Fig. 1(a) and (b) we have plotted the entanglement (S(t)) and interference (I(t)) in coin space as function 
of time for different initial coin states. We notice that for a given initial state, the value of entanglement is signifi-
cantly higher than the value of interference but the patterns are identical. However, irrespective of the initial state, 
the mean value of entanglement and interference is same in both Fig. 1(a) and (b). In Fig. 1(b) the oscillatory 
nature of the curves is prominently visible, indicating the strong presence of memory effects due to the informa-
tion backflow49 between the coin and position degrees of freedom. In Fig. 1(a) oscillation vanishes very quickly 
with time. In order to witness the information backflow we resort to the trace distance between reduced density 
matrix evolved with different initial states. Trace distance between any two density matrices is defined as,

( )D t t t t( ), ( )
1

2
Tr ( ) ( ) ,

(7)1 2 1 2
ρ ρ ρ ρ= | − |
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where ρ1(t) and ρ2(t) are the reduced density matrix after time t starting from two different initial state of the 
particle. In Fig. 1, trace distance for two difference combination of initial states is shown and we note that trace 
distance essential captures the same behavior as that of the entanglement and interference with different mean 
value. However, trace distance plays an important role in quantifying the non-Markovianity in the dynamics.

The non-Markovianity of the reduced dynamics of the particle can be quantified using the Breuer, Laine, Pillo 
(BLP) measure49. The BLP measure is defined as follows,

 ∫ σ ρ=
σ>

( )t dt, (0) ,
(8)0

1,2

where ( ) ( )t D t t, (0) ( ), ( )d

dt

1,2 1 2σ ρ ρ ρ=  is the derivative of the trace distance between the reduced density matrix 

ρ ρt t( ), ( )1 2  obtained using two initial states ψ ± π π( ),
4 2

.

BLP measure captures the information flow between the position and the particle degrees of freedom, using 
the notion of distinguishably of quantum states. We should remark that that the BLP measure is originally defined 
as the maximization over initial states in order to obtain the maximum possible non-Markovianity for the given 
dynamical map. Since we are not interested in this we have dropped the maximization term in Eq. (8). However, 
it is useful to mention that in the quantum walk dynamics, Eq. (8) is maximized for the initial states ψ ± π π( ),

4 2
 

as shown in39.
The non-Markovian behavior characterized by trace distance correlates well with interference. The direct 

relationship between interference and non-Markovianity can be observed in Fig. 2. We notice that the BLP meas-
ure ( ) monotonically increases with θ which in turn controls the amount of interference.

Enhancement of non-Markovianity in the presence of disorder. In the simple scenario where the 
quantum coin operator is fixed, the time evolution is homogeneous and the evolution follows Eq. (4). The quan-
tum walk can be made inhomogeneous by introducing disorder in the system which breaks the time translation 

t t

Figure 1. Plot of Entanglement S(t), trace distance D(t) and interference I(t) as a function of time for different 
initial states of the particle (a) ( ), 0

4
ψ
π  is chosen as an initial state for both S(t) and I(t), for D(t), the initial pair 

of states are ( ), 0
4

ψ ± π . (b) The initial state here is ψ π π( ),
4 2

 for entanglement and interference, while 

( ),
4 2

ψ ± π π  is used for computing D(t). The coin parameter is set to 
4

θ = π  for both the plots. We observe the 

oscillatory nature of all the three curves, typical for non-Markovian evolutions. The trace distance between 
initial states are bounded between entanglement and interference.

Figure 2. BLP measure and interference as a function of the coin parameter θ computed after 200 steps of 
quantum walk for the initial coin state ψ π( ), 0

4
. Both non-Markovianity and interference increases 

monotonically with increase in θ sampled in the interval 




π0, 5

12
.
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symmetry of the evolution. This leads to the localization effects in the position basis states which inhibits the 
spread of the walker. We classify disorder into two types, dynamic and static, depending on whether the coin 
operator changes randomly with time step or position respectively.

We consider two independent and identically distributed random variables  t( )θ  and x( )θ  representing the 
functional dependence on the time or position, respectively. The underlaying probability distribution is consid-
ered to be uniform. The random process generated by θ m( ) where m = t, x is a white noise process which has the 
delta correlation function of the form,

m m( ) ( ) (9)mm
 θ θ δ〈 ′ 〉 = .′

The above correlation function holds in general for any classical Markovian process. The effect of disorder 
essentially causes errors in the qubit (state of the particle) rotation due to random coin operations θ σ− 

e i m( ) x. This 
type of imperfect rotations are often considered as “classical noise” while modelling quantum gate errors44,45 as 
opposed to quantum noise arising due to genuine system bath interaction which affects the internal state of the 
particle33.

The temporally disorder quantum walks evolve according to the following equation,

~|Ψ = |Ψθ⟩ ˆ ⟩t U( ) ( ) (0) , (10)t

t

( )

where, θU t( )
ˆ  is the effective unitary operator that encodes the time dependent random coin operation, sampled in 

the interval 


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π0,
2

. The corresponding trajectory is,

ˆ ˆ ˆΨ = ......... Ψ .θ θ θ−t U U U( ) (0) (11)n n( ) ( 1) (1)

Here n denotes the particular time instance of the quantum walk evolution.
Similarly, spatial disorder can be introduced in quantum walk by applying a position dependent coin opera-

tion which mimics the disorder in the position degrees of freedom30,

~|Ψ = |Ψ .θ⟩ ˆ ⟩t U( ) ( ) (0) (12)x

t

( )

Here C C x xx x x( ) ( )= ∑ ⊗θ θ
ˆ ˆ  is the position dependent coin operation that is encoded in the effective unitary 

operator U x( )ˆ .θ  Both, temporal and spatial disorder are detrimental to certain applications of quantum walks like 
search algorithms. However, by tailoring the disorder process it can play a significantly role in simulating the 
exotic dynamics of disordered materials.

The effect of both the temporal and the spatial disorder leads to localization of the walker in external degrees 
of freedom of the particle. While temporal disorder results is a weaker form of localization, spatial disorder leads 
to Anderson localization. The connection between non-Markovianity and disorder has been explored by studying 
a microscopic model of a two level atom coupled to a circular lattice47. It has been explicitly shown that Anderson 
localization induces non-Markovianity, since the disorder effectively introduces strong coupling between the 
system and a few set of environmental modes. In the quantum walk scenario similar effects can be reproduced. 
We should note that the non-Markovian effects are generated between the internal and external degrees of free-
dom even when there is no disorder in the quantum walks evolution. This is shown in Fig. 3 for different initial 
pair of states with the coin parameter set to θ = π

4
. We observe that, when the quantum walk is made inhomoge-

neous by introducing disorder into the system, the memory effects in the evolution is enhanced from the homo-
geneous case. We explicitly show this by ensemble averaging the BLP measure   over large simulations, both as 
a function of time and disorder strength. From Fig. 3 we observe that,   increases with the strength of disorder 
for both temporal and spatial disorder. However, spatial disorder tends to enhance non-Markovianity more in 
comparison to temporal disorder that almost saturates as the disorder strength increases. Another interesting 
feature that results from this study is the indication of the existence of a threshold value that differentiates spatial 
and temporal localization in terms of the disorder strength.

t

Figure 3. The amount of non-Markovianity quantified using BLP measure after every step of the quantum walk 
for different coin parameter θ for two different initial state of the particle. (a) ψ ± π( ), 0

4
 (b) ( ),

4 2
ψ ± π π . The 

computations are averaged over 103 simulations for 100 percent disorder strength. We observe the enhancement 
of non-Markovianity for both spatial and temporal case, irrespective of the initial states.
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In order to verify our results we chose to compute the ensemble averaged standard deviation (σ) in the posi-
tion space, which is a more intuitive metric to study the effect of disorder in the system. We note that a similar 
threshold point can be found in Fig. 4(a) that differentiates temporal and spatial disorder. This is corroborated by 
the behavior of the ensemble averaged BLP measure depicted in Fig. 4(b). This is interesting for two reasons; 
firstly the qualitative results in the microscopic model studied in47 are reproduced in the quantum walks dynam-
ics, and secondly the localization effect that appears in the position space in effectively captured by analyzing the 
dynamical behavior of the reduced system, that is, state of the particle alone.

It is interesting to note that both spatial and temporal disorder result in enhancement of non-Markovianity 
whereas enhancement of entanglement is seen only with temporal disorder (Fig. 5). This intriguing behav-
ior needs further investigations which can result in better understanding of quantum correlations and 
non-Markovianity in disordered systems. Our studies also show that a small amount of disorder is sufficient to 
bring about a significant rise in non-Markovianity of the dynamics.

Methods
In the numerical simulations, the quantum walk is evolved up to 200 steps, sufficient to support all the results. The 
random sequence of coin operations for the disordered quantum walk is generated from a uniform probability 
distribution. It is important to note that the enhancement of non-Markovianity is observed independent of the 
shape of the probability distribution, the only necessary condition is that for the random variable θ to obeys Eq. 
(9). The strength of disorder given in %, is modelled as the average number of times the random coin operator 
appears in either, total number of time steps for temporal disorder or number of position basis states for spatial 
disorder. The homogeneous quantum walk is recovered when the disorder strength is zero and the maximally 
disordered quantum walk is obtained when the disorder strength is 100%, that is when all the coin operators flips 
randomly. The effect of disorder strength on the position probability distribution is shown in Fig. 6. The effect of 
localization has been measured using two different metrics. (1) The discrete version of the non-Markovianity 
measure described in Eq. (4), which was introduced in49 and also studied in the context of quantum walks50, (2) 
is the standard deviation measure defined as σ = 〈 〉 − 〈 〉P Px x

2 2 , where Px is the probability of finding the walker 
at position x.

Discussion and Conclusion
We have shown that the Markovian disorder in the form of white noise in quantum walks enhances 
non-Markovian behavior in the dynamics. In particular, we have shown that the increase in non-Markovian 
behavior is noticeably higher for spatial disorder which results in Anderson localization when compared to 

Disorder strength (%)

(a) (b)

Disorder strength (%) Disorder strength (%)

Figure 4. Plot of standard deviation and BLP measure as a function of the strength of the disorder used to 
witness the enhancement of non-Markovian memory effects averaged over 103 simulations. (a) BLP measure 
that quantifies non-Markovianity. Enhancement of non-Markovianity is to be noted for both spatial and 
temporal disorder. (b) Standard deviation of the position probability distribution. Identical threshold point for 
both the plots are denoted in Grey solid line.

Figure 5. Average Entanglement between the coin and position degrees of freedom plotted as a function of 
disorder strength evaluated after 200 steps and computed by averaging over 103 simulations. The effects of 
temporal disorder enhances the entanglement while the spatial disorder tend to decreases it.
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temporal disorder which leads to weak localization. With this we have shown that the nature of localization in the 
position space can be analyzed from its non-Markovian behavior obtained by monitoring the information back-
flow in reduced system. The non-Markovian nature of the quantum walk dynamics can be viewed as a potential 
resource, which can be exploited in various metrological applications to probe the dynamics of complex many 
body systems51.

Another interesting observation that is a fall out of this work is the contrasting behavior of entanglement and 
non-Markovianity in the presence of spatial disorder. While both spatial and temporal disorder can enhance 
information backflow, enhancement of entanglement between the position and coin degrees of freedom is pos-
sible only with temporal disorder. These observations need further investigations to discern the usefulness of 
different types of disorder that can be engineered to enhance different properties of the system.
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