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Abstract

Motivated by growing interests in multicomponent metallic alloys and com-
plex fluids, we study a complex mixture with bidispersity in size and poly-
dispersity in energy. The energy polydispersity in the system is introduced
by considering random pair-wise interactions between the particles. Exten-
sive molecular dynamics simulations are performed to compute potential en-
ergy and neighborhood identity ordering (NIO) parameter as a function of
temperature for a wide range of parameters including size-ratio and concen-
tration of the two species by quenching it from a high temperature fluid
state to a crystalline state. Our findings demonstrate an enhancement of
the neighborhood identity ordering on addition of particles of different sizes.
Moreover, a comparatively higher increase in NIO parameter is achieved by
tuning the size-ratio of the particles. We also propose NIO parameter to be
a good marker to differentiate systems (below the liquid-to-solid transition
temperature) having different values of size-ratio and concentrations. Effect
of cooling rates on NIO parameter is also discussed.
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1. Introduction

Understanding the relation between microscopic structure of a mate-
rial and its response to mechanical perturbations is of great technological
and industrial significance. Designing materials with desired properties and
strength have led scientists to consider alloys with many components which
may vary in interactions, shapes, sizes, etc. [1, 2, 3, 4, 5, 6]. For developing
a new material, traditional alloying strategy is to select one dominant com-
ponent and add other elements in small amounts to improve specific proper-
ties. Such techniques put restriction on further improvement of mechanical
properties; and while achieving high strength (∼ GPa), usually failure of
materials occurs. To explore even wider range of remarkable new materials,
strategies like equiatomic substitution of main element with multi-element
systems have been very successful and reviewed in Ref. [4]. These high-
entropy alloys [1, 2, 7, 8] form a variety of amorphous and quasi-crystalline
structures. Moreover, they can also crystallize as a single phase and ex-
hibit good ductility, high toughness, superior strength, etc. For example,
one recent study on a five component CrMnFeCoNi alloy, showing a one-
phase face-centered cubic (fcc) solid solution, found tensile strength above
1 GPa with large fracture toughness [5]. Another study on a different five
component FeCrMnNiCo alloy also forms a single-phase fcc solid solution
and crystallizes in dendritic phase [3]. Recent work on AlCoCrFeNi2.1 alloy
simultaneously achieves high fracture strength and high tensile ductility at
room temperature [9].

These metal alloys find applications ranging from nuclear reactors to
metallic biomaterials. Due to excellent corrosion resistance at high tem-
peratures [10], they are well suited for environments with extreme radiation
exposure and hence, offers more stability to components of future nuclear re-
actors [11]. Grandberg et al. performed experiments and molecular dynamics
simulations on NiCoCr alloy and found a significant reduction in radiation
damage for equiatomic alloys as compared to the corresponding pure element
Ni [11]. The concept of near or equiatomic compositional alloying has been
also applied to bulk metallic glasses (BMG) [12]. One interesting result on
high-entropy BMGs is that they can exhibit amorphous phase, crystalline
phase, etc. under certain conditions, e.g., Al0.5TiZrPdCuNi alloy showed
remarkable ability to be into a glassy phase as well as crystalline phase de-
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pending on the sample size and the cooling rate [13]. Many new metallic
alloys are being developed for various biomedical applications in implanta-
tion of hard tissues and bones [6]. Materials like Ca20Mg20Sr20Yb20Zn20 have
been reported to promote osteogenesis and improved mechanical properties;
and have shown good resistance to corrosion [14].

The polydispersity in a multicomponent system is not only due to the
distribution in size of the constituent atoms or molecules. A system can also
be polydisperse due to the distribution of many other variables characteriz-
ing the system, e.g., charge, shape, interaction energy, etc. In addition to
experimental works mentioned above, these systems have drawn attention of
researchers from theoretical and computational perspectives [15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. The computer simulations of one
such extreme case of mixing, where all particles are considered to be differ-
ent by considering random interactions between them, has shown significant
improvement in cohesive forces between the particles which in turn increases
the yield strength of the system [17]. The motivation for choosing all pair-
wise particle interactions to be different comes not only from high-entropy
alloys but also from modeling complex fluids, e.g., foams, emulsions, colloidal
assemblies, proteins, and granular materials, where each of the particles dif-
fers in size, shape, and interaction with its neighbors [31, 32]. In this work,
we test whether mixing particles of two sizes (i.e., bidisperse in size) can also
enhance the neighborhood identity ordering (NIO) of an energy polydisperse
system where all pair-wise particle interactions are different.

2. Model and Simulation Details

To investigate the properties of systems with bidispersity in size and poly-
dispersity in energy, particles with two different sizes are considered where
all interactions between the particle pairs are different (AID) [17, 18]. The
bigger particles are chosen as species A while the smaller particles are of
type B. The concentration of the bigger particles is the ratio of the number
of bigger particles NA and the total number of particles N , i.e., xA = NA/N .
The concentration of smaller particles, therefore, is xB = 1 − xA. The size
disparity between the bigger particles and the smaller particles is defined in
terms of size-ratio α = σB/σA, where σA and σB are like diameters of bigger
and smaller particles, respectively. As discussed in Sec. 1, energy polydis-
persity is modeled by the random interactions between all the particle pairs
ǫij. Here, values of ǫij are withdrawn from a uniform distribution between 1
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and 4 [17, 18, 19], so that the mean value of ǫij is 2.5. All the fluid particles
are considered to have mass as unity. The fluid particles interact with each
other via the Lennard-Jones (LJ) potential,

U ss′

ij (r) = 4ǫij

[(σss′

r

)12

−

(σss′

r

)6]

, (1)

where i, j is the particle index and s, s′ ∈ A,B. σss′ is computed by consid-
ering the arithmetic mean, i.e., σss′ = (σs+σs′)/2 The potential is truncated
and shifted at r = rcut = 2.5σ, so that the truncated potential Ũ ss′

ij (r) is
defined as [33, 34],

Ũ ss′

ij (r) =

{

U ss′

ij (r)− U ss′

ij (rcut) if r < rcut

0 if r ≥ rcut .
(2)

The physical quantities measured here are reported in reduced LJ units
[33, 34]. The temperature T is expressed in units of ǫ/kB where interac-
tion parameter ǫ and Boltzmann constant kB are both taken as unity. The
lengths are expressed in units of σA which is also taken as unity. The fluid
mixture is simulated in NV T ensemble. The dynamics is solved by using
a velocity-Verlet integrator [35] with a time step of δt = 0.005τLJ , where
τLJ = σA(m/ǫ)1/2 = 1 is the LJ time unit. The multicomponent fluid mixture
is simulated at three densities ρ = 0.7, 0.8, and 0.9. We consider N = 1024
and vary NA to investigate the system for many different concentrations of
bigger particles ranging from 0 to 1. The particles are simulated in a two
dimensional box of length L =

√

N/ρ. Periodic boundary conditions with
period L are imposed along the x and y directions. At time t = 0, the fluid
particles are placed on a square lattice and their velocity is chosen from a
Maxwell-Boltzmann distribution at a high temperature set at T = 5 for the
simulations done here. The system is then equilibrated for t = 100τLJ . A
constant temperature is maintained in the system by using Berendsen ther-
mostat [36]. We then start cooling the system to T = 0 for which a cooling
rate of 10−3/τLJ time units is chosen for most of the results presented in the
paper. To obtain better statistics, ensemble average is done over 200 inde-
pendent initial configurations. However, to study the effect of cooling rate
on NIO parameter, averaging is done over 50 ensembles.

3. Results and Discussion

As discussed in Sec. 2 the bidisperse AID mixture is simulated at three
densities ρ = 0.7, 0.8 and 0.9 at temperature T = 5 and then quenched with
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cooling rate 10−3/τLJ to temperature T = 0. Typical snapshots of the system
in equilibrium at T = 5 and T = 0 are shown in Fig. 1 for all three densities.
The particles are colored according to their effective particle pair interaction
parameter ǫeffi which is defined as,

ǫeffi =
1

nb

nb
∑

j=1

ǫij, (3)

where nb is number of neighbors of particles i which are inside a cutoff radius
of 1.7. We observe that the system for which the particles were randomly
distributed at T = 5, as expected, has crystallized at T = 0. The particles
form domains of hexagonal lattice (also confirmed by Voronoi analysis in
Fig. 2), and voids which reduce as the density of system is increased. It
can also be observed that the particles are organized according to their ǫeffi
values. The particles with enhanced pair interaction parameter (PIP) ǫeffi

(a) T = 5
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(d) T = 0
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(b) T = 5
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(e) T = 0
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 3

 4

(c) T = 5
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 2

 3

 4

(f) T = 0

 1

 2

 3

 4

Figure 1: Typical configuration of the bidisperse AID mixture is shown at temperatures
T = 5 (upper panel) and T = 0 (lower panel) for concentration of A particles xA = 0.5
and size-ratio α = 0.9. The particles are colored according to their effective interaction
parameter ǫi

eff
as displayed in the color bar. The parameters for which the configuration

of particles is shown are (a) ρ = 0.7, (b) ρ = 0.8, (c) ρ = 0.9, (d) ρ = 0.7, (e) ρ = 0.8, and
(f) ρ = 0.9.
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have neighbors with enhanced PIP and the particles with smaller ǫeffi lie at
the boundary. Such an order is called neighborhood identity ordering (NIO)
and is in agreement with what has been reported previously [17, 18, 19]. This
NIO leads to increased cohesive forces between the particles.

Figure 2 displays the Voronoi analysis (one of the useful technique for
studying the local atomic structure [24, 37]) for the snapshots corresponding
to the density ρ = 0.9 (shown in Figs. 1(c) and 1(f)) for T = 5 (left) and
T = 0 (right). The position of particles are represented by circles in blue
(A-particles) and yellow (B-particles) colors. The colored boxes denote poly-
gons containing particles with different number of neighbors. Green boxes
represent pentagons enclosing particles with 5 neighbors. Magenta colored
box encloses particles with 7 neighbors. Rest of the polygons are shown
in white color. The configuration at T = 5 has nearly 55.5% hexagons,
22.8% pentagons, and 18.3% heptagons. Hence, the corresponding snapshot,
of course, looks more like a liquid. The quenched snapshot at T = 0 has
nearly 86.7% hexagons, 8.6% pentagons, and 2.5% heptagons. This indicates
that the quenched system crystallizes as it is mainly composed of hexagonal
patches (in 2-dimension). This is due to Thue’s theorem which states that
the regular hexagonal packing is the densest of all possible circle packings in
a 2-dimensional plane [38].

Figure 2: Voronoi tessellation of the snapshots for ρ = 0.9 at T = 5 (left) and T = 0
(right). Blue and yellow circles represent positions of A and B type particles, respectively.
Magenta cells enclose particles with 7 nearest neighbors and the green cells enclose particles
with 5 nearest neighbors. White cells show mostly the crystalline patches of particles with
6 nearest neighbors.
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In the upper panel of Fig. 3, we plot the potential energy per particle
U/N with temperature as the system is quenched from T = 5 to T = 0. The
plots are presented at densities ρ = 0.7, 0.8, and 0.9 for concentration of big-
ger particles xA = 0.1, 0.3, 0.5, 0.8, 0.0 (100%B-particles), and 1.0 (100%A-
particles). It is observed that U/N decreases with temperature as the sys-
tem is cooled for all the densities. For ρ = 0.7, 0.8, U/N decreases with the
increase in xA for a fixed temperature (see Figs. 3(a) and 3(b)). However, for
ρ = 0.9, this trend is reversed beyond the transition temperature at around

0 1 2 3 4 5
T

-8

-6

-4

-2

U
 /

 N

x
A
 = 0.1

x
A
 = 0.3

x
A
 = 0.5

x
A
 = 0.8

Only B

Only A

ρ = 0.7

0 1 2 3 4 5
T

ρ = 0.8

0 1 2 3 4 5
T

ρ = 0.9

(a) (b) (c)

0 1 2 3 4 5
T

2.6

2.8

3.0

ε

x
A
 = 0.1

x
A
 = 0.3

x
A
 = 0.5

x
A
 = 0.8

Only B

Only A

ρ = 0.7

0 1 2 3 4 5
T

ρ = 0.8
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Figure 3: Upper panel: Dependence of potential energy per particle on temperature is
shown for various concentration of the bigger particles at three different densities (a)
ρ = 0.7, (b) ρ = 0.8 and (c) ρ = 0.9. Lower panel: NIO parameter ǭ is plotted against T
for same concentration of bigger particles as shown in the upper panel for same density
values (d) ρ = 0.7, (e) ρ = 0.8 and (f) ρ = 0.9. For all these plots, size-ratio α is fixed at
0.9.
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T = 3 as shown in Fig. 3(c). This reverse trend cannot be observed for
ρ = 0.7 and 0.8 within the plotted temperature range (because we quench
the system from T = 5). The liquid to solid transition for ρ = 0.7 in Fig. 3(a)
occurs at T ≈ 1.1 for all the compositions. The transistion temperature for
ρ = 0.6944 for the same system at xA = 1 is reported to be at T ≈ 1.1 in [18].
The slope of the curve in fluid region increases as the value of xA is increased.
This implies that the specific heat at constant volume is higher for higher
xA [17]. As we increase the density, a gradual shift (increase) in the liquid to
solid transition temperature with the increase in xA is observed as shown in
Figs. 3(b) and 3(c). For ρ = 0.9, the transition temperature increases from
T ≈ 1.1 for xA = 0 (only B) to T ≈ 3 for xA = 1 (only A) in Fig. 3(c). Note
that A particles are bigger in size as compared to B particles.

It is already known that upon cooling, an AID system develops NIO
ordering in the liquid state (close to crystallization) [17, 18]. The NIO in the
system is characterized by the parameter ǭ which is obtained by averaging
over ǫeffi of all the particles. In the lower panel of Fig. 3, the NIO parameter
ǭ is plotted against the temperature. Note that the higher NIO parameter
corresponds to lower potential energy per particle. Therefore, a decrease in
U/N while cooling the system implies the corresponding increase in ǭ as can
be confirmed by comparing the upper panel with the lower panel. The local
organization of particles with higher ǫeffi around particles with higher ǫeffi leads
to an increase in average PIP ǭ of the system as the temperature is decreased.
Below T ∼ 1.1, ǭ ceases to increase and saturates. The saturation value for
different compositions varies as the density is increased. More specifically,
this value is small for xA = 1 and as we start adding the B particles in the
mixture, the saturation value increases and reaches up to a maximum value
for 50 : 50 mixture and then it again decreases (see Figs. 3(d), 3(e) and
3(f)). A similar phenomenon of increase in NIO parameter with different
quenching protocols has been attributed to the mobility of defects below the
liquid to solid transition temperature [17]. It is also observed that in the
fluid region, ǭ seems to be independent of density. However, at T = 0, ǭ
varies with the densities. Furthermore, we observe that at low temperature,
values of U/N for different compositions are same. In contrast, a significant
change is observed for ǭ within the similar range of temperature. This finding
suggests that ǭ can be used as a good marker for differentiating systems with
different values of xA at low temperature (below liquid to solid transition),
which otherwise is not possible from the plots of U/N for similar parameters.

8



Next, we study the potential energy per particle (U/N) and NIO pa-
rameter (ǭ) as a function of temperature for various values of size-ratio α
(= σB/σA) and densities. The plots for U/N vs. T are shown in the upper
panel of Fig. 4, whereas in the lower panel of Fig. 4, variation of ǭ is plotted
against T . We take α = 0.5, 0.6, 0.7, 0.8, 0.9 with xA = 0.5 (50 : 50 mixture)
and one-component systems consisting of only A-type particles and only B-
type particles as shown in the legend. When we increase α, potential energy

Figure 4: Upper panel: Temperature dependence of potential energy per particle is shown
for size-ratios α = 0.5, 0.6, 0.7, 0.8, 0.9 and for the cases where only particles of type A
as well as type B are considered for densities (a) ρ = 0.7, (b) ρ = 0.8, and (c) ρ = 0.9.
Lower panel: The change in NIO parameter ǭ as the temperature is decreased with cooling
rate dT/dt = 10−3/τLJ is shown for same system parameters corresponding to Fig. 3 at
densities (a) ρ = 0.7, (b) ρ = 0.8, and (c) ρ = 0.9. For all these plots, concentration of
A-type particles xA is fixed at 0.5.
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per particle is lowered in the fluid regime. We also note that the curve for
α = 0.8 (shown in blue circle) and for only B-type particles (shown in ma-
genta line) are overlapping. This is because, for a system with particles of
only B-type (σ = 0.9), the average size is 0.9 and for the case when α = 0.9,
the average size is also 0.9. With the increase in density, the transition tem-
perature slowly increases with α, of course, the transition takes place over a
broader range of temperature range as well. Similar to the case discussed in
Fig. 3, below the crystallization temperature, U/N is not a good marker for
comparing the systems with varying α. However, ǭ again turns out to be a
good quantity to differentiate the curves with different values of α in the solid
regime. This is clearly visible in the lower panel of Fig. 4. The saturation
value of ǭ in the solid regime increases with α and reaches its maximum for
α = 0.8. For α = 0.9 (yellow line), ǭ is lower as compared to the case with
α = 0.5. NIO parameter is minimum for the cases with only A-type as well
as B-type particles (results not shown).

The dependence of NIO parameter ǭ in the crystalline state, i.e., at T = 0
on concentration of bigger particles xA and size-ratio α is plotted in Fig. 5.
As xA is increased from xA = 0 to 1, it is observed that till xA = 0.5, the
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ρ = 0.7
ρ = 0.8

0.5 0.6 0.7 0.8 0.9 1
α

2.80
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=
0
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ρ = 0.7

ρ = 0.8

ρ = 0.9
0 0.2 0.4 0.6 0.8 1
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2.8

2.9
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3.1

ρ = 0.7
ρ = 0.8
ρ = 0.9

(a) (b)

Figure 5: (a) Main: The variation of NIO parameter ǭ with concentration of bigger parti-
cles xA is displayed at T = 0 for ρ = 0.7 and 0.8. The solid lines are quadratic fit to the
data and are symmetric about xA = 0.5. Inset: Plot of ǭ(T = 0) vs. xA for ρ = 0.7, 0.8, 0.9.
A significant deviation is observed for ρ = 0.9 as compared to quadratic and symmetric
plots corresponding to ρ = 0.7, 0.8. The size-ratio is set at α = 0.9. (b) The dependence
of ǭ(T = 0) on size-ratio α is shown at densities ρ = 0.7, 0.8 and 0.9. The value of xA is
0.5.
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value of ǭ(T = 0) increases monotonically and reaches a peak at xA = 0.5.
Upon increasing xA even further, ǭ(T = 0) starts decreasing. Therefore, NIO
parameter can be increased by increasing the concentration of A particles
until the 50 : 50 ratio is achieved. For all the densities considered here, an
increase of roughly 1.5% is observed in the NIO parameter as compared to the
systems with smaller particles only. If a comparison is made with a system of
A particles only, the increase in NIO parameter for ρ = 0.7 and 0.8 is again
1.5%. However, for ρ = 0.9, a significant increase of 11% is observed. A
similar behavior of increase in ǭ(T = 0) was obtained by using the mechanism
of defect mobility via invoking different quenching protocols [17]. Though,
the plots of ǭ(T = 0) vs. xA for ρ = 0.7, 0.8 exhibit a quadratic as well as
symmetric behavior about xA = 0.5, the trend is absent for ρ = 0.9 as shown
in the inset of Fig. 5(a). In Fig. 5(b), ǭ(T = 0) is plotted with size-ratio
α. It is observed that as the size-ratio is increased from 0.5 to 0.8, ǭ(T = 0)
increases monotonically while for α ≥ 0.9, the NIO parameter ǭ(T = 0)
decreases and reaches a value lower than its value at other size-ratios. For
densities ρ = 0.7 and 0.8, the NIO parameter increases upto 3.5% of its value
for systems with A particles or B particles only. The density ρ = 0.9 displays
the same increase as compared to a system of smaller particles only while
an enhancement of 15% in the NIO parameter is observed on camparing it
with a system with bigger particles only.

Finally, in Fig. 6, we plot the dependence of NIO parameter ǭ on tem-
perature for ρ = 0.7, 0.8, 0.9 and xA = 0.5 at lower cooling rates. It is
observed that as the cooling rate is decreased, ǭ saturates to a higher value
below the crystallization temperature. The slow quenching rate provides
longer time for configurational sampling at each temperature and enhance
the NIO parameter. This is an interesting finding and is analogous to a fluid
being quenched (fast enough to avoid the first-order phase transition, i.e.,
crystallization transition) at different cooling rates and glasses with different
mechanical properties are formed below glass transition temperature [39]. In
this context, a system with higher value of ǭ would be analogous to a ductile
glass (where system gets trapped in a deeper minima of the potential energy
landscape [40]), both being obtained at lower cooling rates.

4. Conclusion

Designing materials with one or a few components poses a limitation in
further improving the mechanical, optical, thermal, etc. properties. This
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Figure 6: The neighborhood identity ordering parameter ǭ is shown as a function of
temperature for cooling rates dT/dt = 10−3/τLJ , 10

−4/τLJ and 10−5/τLJ and densities
(a) ρ = 0.7, (b) ρ = 0.8, and (c) ρ = 0.9. The other parameters are xA = 0.5 and α = 0.9.

restriction has led materials scientists as well as engineers to tailor polydis-
perse systems, e.g., multicomponent alloys and complex fluids, for improving
these properties. We, therefore, perform atomistic simulations for a complex
mixture which is polydisperse in energy and bidisperse in size. The polydis-
persity in energy is introduced by considering all pair interactions between
the particles to be different. It is observed that mixing AID particles of two
different sizes increase the attractive forces between them. The increased co-
hesive forces between the particles, in turn, enhances the mechanical strength
of the system. The attractive forces between the particles are measured in
terms of an NIO parameter, which shows a significant increase for specific
compositions and size-ratios. An enhancement in the NIO parameter is also
achieved by cooling the system to a crystalline state with reduced cooling
rates. We report our findings for a wide range of parameters and thus, of-
fer some guidelines to the materials scientists as to which parameter under
certain conditions would be better suited to give the desired property. We
trust that the present results will have further implications on the study of
multicomponent metallic alloys and complex fluids.
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