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ABSTRACT

A power-law fluid flowing down a slippery inclined plane under the action of gravity is deliberated in this research work. A
Newtonian layer at a small strain rate is introduced to take care of the divergence of the viscosity at a zero strain rate. A low-
dimensional two-equation model is formulated using a weighted-residual approach in terms of two coupled evolution equations
for the film thickness h and a local velocity amplitude or the flow rate q within the framework of lubrication theory. Moreover,
a long-wave instability is shown in detail. Linear stability analysis of the proposed two-equation model reveals good agreement
with the spatial Orr-Sommerfeld analysis. The influence of a wall-slip on the primary instability has been found to be non-trivial.
It has the stabilizing effect at larger values of the Reynolds number, whereas at the onset of the instability, the role is destabilizing
which may be because of the increase in dynamic wave speed by the wall slip. Competing impressions of shear-thinning/shear-
thickening andwall slip velocity on the primary instability are captured. The impact of slip velocity on the traveling-wave solutions
is discussed using the bifurcation diagram. An increasing value of the slip shows a significant effect on the traveling wave and
free surface amplitude. Slip velocity controls both the kinematic and dynamic waves of the system, and thus, it has the profound
passive impact on the instability.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5078450

NOMENCLATURE

α1 Dimensionless parameter
dependent on the substrate

β Dimensionless slip parame-
ter

c Phase speed
cot θ Slope coefficient
Dij Rate of strain tensor
ǫ Film parameter
f Frequency
Fr Froude number
g Gravity acceleration
γ̇ Strain rate
Γ = (lc/lν )2 Kapitza number
h Film thickness
hN Nusselt film thickness

h̄N Uniform film thickness
κ Permeability of the substrate
lc = (σ/(ρg sin θ))1/2 Capillary length
lν = (µn/ρ)2/(n+2)(g sin θ)(n−2)/(n+2) Viscous gravity length scale
ls = (

√
κ/α1) Dimensional slip length

λ Wavelength
µ Apparent viscosity
µeff Effective viscosity
µn Viscosity
n Power-law index
ν Kinematic viscosity
ω Angular frequency
p Pressure

q = ∫ h0 udy Local flow rate
Re Reynolds number
ρ Density
s Threshold
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σ Surface tension
tν = (µn/ρ)1/(n+2)(g sin θ)−2/(n+2) Viscous gravity time scale
τ Shear stress
θ Angle of inclination
V Free surface velocity
We Weber number

I. INTRODUCTION

Since the pioneering experiments by Kapitza and
Kapitza,1 many researchers have devoted their work theoreti-
cally, experimentally, and numerically to investigate the signif-
icant features of the gravity-driven thin film flow of Newtonian
and non-Newtonian fluids down an inclined substrate.2–19

Pascal20 studied the stability characteristics of a Newtonian
thin film flow within the framework of the Orr-Sommerfeld
analysis and showed the effect of the porous/slippery sub-
strate on the primary instability is nontrivial. He modeled a
fluid film flow over an inclined porous substrate with the
Navier-slip boundary condition u = lsuy, where ls is the effec-
tive slip length and u and uy are, respectively, the tangen-
tial velocity and velocity gradient, equivalent to Beavers and
Joseph’s21 boundary condition (ls =

√
κ/α1; here, κ is the per-

meability of the substrate and α1 is a substrate constant). The
Navier-slip boundary condition states that the velocity at the
boundary is proportional to the tangential component of the
wall stress. Beavers and Joseph21 proposed a semi-empirical
velocity slip boundary condition while analyzing the macro-
scopic model of transport phenomena over a fluid and a per-
meable medium interface. Later, Sadiq and Usha22 retrieved
the result of Pascal20 by performing a weakly nonlinear sta-
bility analysis. However, these investigations depend on Ben-
ney’s5 long-wave expansion and bound to a small Reynolds
number. The surface conditions acquired by Sadiq and Usha22

and Thiele et al.23 experience the ill effects of the finite time
explode issue raised by Pumir et al.24

Furthermore, there are many settings and applications,
for example, lubrication,37 microfluidics,25,26 and polymer
melt,27,28 where the velocity of a viscous fluid shows a tan-
gential slip on the substrate. Indeed, the slip impacts have
been investigated in a plane Poiseuille flow with both symmet-
ric and asymmetric slip boundary conditions.29,30 Lauga and
Cossu30 performed linear stability analysis on the pressure-
driven channel flow where their results show that the pres-
ence of the slip increases the critical Reynolds number for
instability, whereas Sahu et al.31 showed that the substrate slip
has a destabilizing in a film flow through a diverging channel
at a low Knudsen number. The presence of the wall slip on a
microchannel flow of the two immiscible fluids separated by a
sharp interface demonstrates the enhancement in the stability
of the stratified film flow.32

Miksis and Davis33 determined an influential boundary
condition for a single-phase film flow over a rough sur-
face where the Navier-slip boundary condition with the slip-
coefficient is equal to the average amplitude of the roughness,
only if the roughness amplitude is small. Min and Kim34 dis-
cussed the impacts of hydrophobic surfaces on falling film

stability and transition to turbulence in the perspective of its
significance in numerous engineering applications. They rep-
resented the hydrophobic surface as a surface with the slip
boundary condition, and their results successfully reveal that
the slip boundary condition has a significant impact on the film
stability and transition. Since the presence of the slip influ-
ences the gravity-driven film flow, several studies have been
performed dealing with the slip effects.35–50 The mechanism
of the primary instability for a film down a slippery incline has
been introduced by Samanta et al.50 using the Whitham wave
hierarchy. They showed that the instability of the flow sys-
tem is generated due to the faster propagation of kinematic
waves than the dynamic waves. The slip at the wall deceler-
ates the dynamic waves to stabilize the base flow and thus
contributes to the flow system instability. At a large Reynolds
number, the slip at the wall accelerates the base flow; the film
thickness decreases far from the instability threshold, and the
surface tension effect becomes dominant, and, consequently,
the effect of the slip stabilizes beyond the threshold for insta-
bility. These studies are very relevant and significant since, in
many natural and industrial settings, the bottom substrate is
solid and permeable.

Mahmoud47 investigated the wall slip and the heat gener-
ation effects in a non-Newtonian power-law fluid on a moving
substrate. He found that the velocity of the fluid near the sub-
strate decreases as the value of the slip increases, but the
velocity increases at a more substantial distance. The wall
slip can stimulate the significant transverse flow of shear-
thickening fluids in comparison with Newtonian fluids shown
by Pereira.48 However, this transverse flow is suppressed for
shear-thinning fluid. Joshi and Denn46 studied the inertia-
less planar contraction flow for Newtonian and inelastic non-
Newtonian fluids with the wall slip. They investigated that the
physical behavior of the power-law fluid changes in the pres-
ence of a slip boundary condition, which creates a curiosity
about the effect of the slip boundary on the instability of such
a flow.

The wave dynamics of a falling film flow over a
solid/rough surface with the slip effect has been studied pre-
viously; however, there is still a scope of improvement in
the falling film wave dynamics, particularly, the wave-to-wave
interaction state. However, the experimental results of Liu
and Gollub51 and Vlachogiannis and Bontozoglou52 showed
the amalgamation and repulsion events between waves which
result in the number of solitary waves to decrease far from the
inlet. Chang et al.53 numerically investigated the coarsening
dynamics. Moreover, it was noticed that in comparison with
the Newtonian cases, non-Newtonian cases are less studied,
especially for fluids with a viscous effect which is a function of
the strain rate.

Recently Ruyer-Quil et al.54,55 derived a two-equation
model for non-Newtonian film flows with the no-slip bound-
ary condition at the wall to study the wave dynamics and thus
the effect of wave-to-wave interaction processes by taking
into account the second order O(ǫ2) streamwise viscous diffu-
sion effect. They successfully captured the onset of instability

Phys. Fluids 31, 013102 (2019); doi: 10.1063/1.5078450 31, 013102-2

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

and the damping of the capillary waves in a non-linear regime.
The two-equation model derived earlier for Newtonian film
flows by Amaouche et al.56 and Fernández-Nieto et al.57 that
are consistent up to order ǫ enabled to capture the instability
threshold correctly. These phenomena would be interesting
to study with the effect of a wall slip on wave dynamics of the
power-law fluid system. It has been shown that the presence
of the slip boundary condition influences the wave dynamics
of the flow system. Therefore, in the present study, we have
considered the two-equation model of Ruyer-Quil et al.54,55

with the slip effect for power-law film flows to study the wave
dynamics, the effects of the slip on the flow instability, and the
effective viscosity µeff (γ̇). Our study focuses on how the pres-
ence of the slip effect influences the flow instability, and the
wave dynamics can be captured accurately by considering the
second order O(ǫ2) streamwise viscous diffusion effect, which
is not explored previously.

The rest of the paper is organized as follows. Section II
is devoted to the formulations of governing equations and
their boundary conditions. The long-wave approximation is
discussed in Sec. III. A coupled two-equation model based
on the boundary layer approximation and weighted-residual
technique is detailed in Sec. IV. Section V presents the linear
stability analysis of the base flow. The results are compared
and discussed in Sec. VI. Finally, the conclusions drawn from
the present study are summarized in Sec. VII.

II. MATHEMATICAL MODEL

We consider a two-dimensional power-law liquid film
flowing over a slippery (or hydrophobic) inclined plane under
the action of gravity, as shown in Fig. 1. The study discusses
the modeling and stability analysis of a power-law film flow
over a slippery/hydrophobic inclined wall. We include a thin
Newtonian plateau (see Fig. 1) at a small strain rate on the
top of the power-law layer to control the divergence of the
effective viscosity at a zero strain rate.54,55 Following the work
of Ruyer-Quil et al.,54,55 we also aim to model the power-law
falling film over a slippery wall by taking the second order vis-
cous diffusion term in a consistent way. Such a modeling is
very helpful to easily handle the mathematical and numerical
difficulties of power-law flow problems.

FIG. 1. Schematic diagram of a power-law film falling down over a slippery inclined
plane.

The flow is assumed to be incompressible, and the fluid
properties which are density ρ, surface tension σ, viscosity
µn, power-law index n, the angle of inclination θ, and the grav-
ity acceleration g are constant. Kinematic viscosity is denoted
by ν = µn/ρ. A Cartesian coordinate system (x, y) is cho-
sen along the stream-wise and cross-stream directions of the
flow, respectively. Pressure p is acting inside the fluid film,
and velocity components u and v are taken in the stream-wise
and cross-stream directions, respectively. All the important
parameters are listed in nomenclature. The dimensional form
of governing equations reads as

∂xu + ∂yv = 0, (1a)

ρ
(

∂tu + u∂xu + v∂yu
)

= −∂xp + ρg sin θ + ∂xτxx + ∂yτxy, (1b)

ρ
(

∂tv + u∂xv + v∂yv
)

= −∂yp − ρg cos θ + ∂xτyx + ∂yτyy, (1c)

where τij = 2µeff(γ̇)Dij. (1d)

Here, u = ui + vj is the velocity vector, Dij = (∂iuj + ∂jui)/2 is the

rate of strain tensor, γ̇ =
√

2DklDkl is the strain rate, and µeff is
the effective viscosity which is a function of the strain rate γ̇.
The strain to shear relation

µeff(γ̇) = µnγ̇
n−1 (2)

is used to model the pseudo-plastic or shear-thinning flu-
ids (n < 1) and dilatant or shear-thickening fluids (n > 1). To
account for the streamwise viscous diffusion, Ruyer-Quil et
al.54,55 computed the effective viscosity µeff (γ̇) and its deriva-
tive at the free surface (where γ̇ → 0 for an unperturbed
interface). However, for the power-law case, it was found that
both the effective viscosity and its derivative at γ̇ = 0 are
undefined for the power-law index n < 3, which corresponds
to mostly the shear-thinning and shear-thickening fluids. This
circumstance requires a regularization at the zero strain rate
of the power-law by introducing the Newtonian layer at the
low strain rates.

A regularization of the Ostwald-de Waele power law
model [Eq. (2)] is assumed at the reduced shear rate to regain
the Newtonian characteristic in the proper limit. The three-
parameter Carreau law is given as

µeff(γ̇) = µ0

1 +
(

γ̇

γ̇c

)2
(n−1)
2

,

where µ0 is the zero strain viscosity near the free surface
and γ̇c is the critical strain rate separating Newtonian and
non-Newtonian behaviors of shear-thinning xanthan dilute
solutions. However, using the above relation forbids the base
flow from being determined analytically and one can instead
introduce a Newtonian plateau,

µeff(γ̇) =

{

µnγ̇
n−1, for γ̇ > γ̇c

µ0, for γ̇ ≤ γ̇c .

The system of Eq. (1) is closed by the boundary conditions
prescribed at the free surface y = h(x, t),
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[
1 − (∂xh)2

]
τxy + ∂xh

(

τyy − τxx
)

= 0, (3a)

pa − p +
τxx(∂xh)2 − 2τxy∂xh + τyy

1 + (∂xh)2
=

σ∂xxh

[1 + (∂xh)2]
3/2

, (3b)

∂th + u∂xh = v, (3c)

and at the wall y = 0

u =

√
κ

α1
uy and v = 0, (3d)

where κ is the permeability of the substrate and α1 is a
dimensionless parameter dependent on the substrate.

Using the viscous-gravity length lν = (µn/ρ)
2/(n+2)

(g sin θ)(n−2)/(n+2) and the time scale tν =
(

µn

ρ

)
1

n+2 (g sin θ)−
2

n+2 , the

non-dimensional form of governing equations reads as

ux + vy = 0, (4a)

Re
(

ut + uux + vuy

)

= −px + 1 + τxxx + τxyy, (4b)

Re
(

vt + uvx + vvy
)

= −py − cot θ + τyxx + τyyy. (4c)

Note that the viscous-gravity length scale lν is defined based
on the balance of gravity acceleration and viscous drag.10,54,55

However, the balance of viscosity and gravity acceleration
corresponds to the viscous-gravity time scale tν . The dimen-
sionless boundary conditions along with the above governing
equations are: (i) The Navier-slip boundary condition15 and
the no-penetration condition at the plane, y = 0,

u = βuy, v = 0, (4d)

where β = ls/lν is the dimensionless slip length (ls =
√
κ/α1).

(ii) The balance of tangential and normal stresses at the free
surface, y = h(x, t),[

1 − (hx)2
]
τxy + hx

(

τyy − τxx
)

= 0, (4e)

− p +
τxx(hx)2 − 2τxyhx + τyy

1 + (hx)2
=We

hxx

[1 + (hx)2]
3/2

, (4f)

(iii) The kinematic boundary condition at the free surface, y =
h(x, t),

ht + uhx = v . (4g)

The Weber number is defined as We = σ/(ρg sin θh̄2N). Finally,
surface tension, gravity, and viscous drag can be written as a
function of the Kapitza number,

Γ = (lc/lν )
2
= (σ/ρ)(µn/ρ)

−4/(n+2)(g sin θ)(2−3n)/(n+2), (5)

where lc =
√

[σ/(ρg sin θ)] is the capillary length. The Weber

and Kapitza numbers can be related by the relation We =
Γ(lν/h̄N)2.

The velocity scale V is defined by

V = *,
ρgh̄n+1N sin θ

µn
+-
1/n [

1 + β
n + 1

n

]
, (6)

where h̄N, the uniform film thickness, is the length scale. The

Froude number Fr = V/
√

gh̄N cos θ, which compares the char-

acteristic speed of the flowwith the speed of the gravity waves
propagating at the interface, and the Reynolds number

Re =
ρV2−nh̄nN

µn
=

[
(µn/ρ)

−2(g sin θ)2−nh̄n+2N

] 1/n [
1 + β

n + 1

n

]2−n
(7)

are related to the Froude number by a relation Re/cot θ
= Fr2. The Reynolds number is also written as Re =

(h̄N/lν )(n+2)/n
[
1 + β n+1

n

]2−n
which balances the gravity accelera-

tion and viscous drag. We may also rewrite the velocity scale
V as

V =
lν
tν

*,
h̄N
lν

+-
n+1
n [

1 + β
n + 1

n

]
. (8)

Note that the term with β is coming due to the wall velocity
slip.

III. LONG-WAVE EXPANSION

We assume (i) slow space and time evolutions ∂x ,t ∼
ǫ where ǫ ≪ 1 is a formal film parameter and (ii) surface
deformations induce order-ǫ correction of the velocity pro-
file from the flat-film solution. Otherwise stated, assumption
(ii) implies that viscosity is strong enough to ensure the cross-
stream coherence of the flow which should be verified for
small to moderate Reynolds numbers (Re ∼ O(1)). Following the
long-wave expansion technique, we can write

u = u0+ǫu1+ǫ
2u2 . . . , v = ǫ v1+ǫ

2v2 . . . , p = p0+ǫp1+ǫ
2p2 . . . ,

(9)

τyx = u0y
n + ǫ (n),

τxx = 2∂xu
[
2(∂xu)

2 +
(

∂yu + ∂xv
)2

+ 2
(

∂yv
)2
] (n−1)/2

= 2∂xu0
���∂yu0���n−1 +O(ǫ3),

τyy = 2∂yv
[
2(∂xu)

2 +
(

∂yu + ∂xv
)2

+ 2
(

∂yv
)2
] (n−1)/2

= 2∂yv0
���∂yu0���n−1 +O(ǫ3).

Integrating Eq. (4a) with respect to y and using kinematic
boundary condition (4g), the equation regarding mass balance
is obtained as

ht + *,
∫ h

0
udy+-x = ht + qx = 0, (10)

where q(x, t) = ∫ h0 udy is the local flow rate. Substituting (9)
into (4a)–(4f), we consider the zeroth-order equations and
boundary conditions of O(ǫ0),

(u0y
n)y + 1 = 0, p0y + cot θ = 0, u0 = βu0y,

u0y
n |h= 0, p0 = −Wehxx.

(11)
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The term Wehxx represents the capillary force that pre-
vents the breaking of nonlinear waves.13 The solutions of the
zeroth-order equations are given by

u0 =
n

n + 1
h

n+1
n


1 −

(

1 − y

h

)
n+1
n
 +

β

h

, p0 = cot θ(h − y)−Wehxx,

(12)
and the corresponding flow rate becomes

q(x, t) =
n

1 + 2n
h

1+2n
n + βh

n+1
n , (13)

which depicts the dependency of the flow to the kinematics of
the free surface elevation. Substituting q(x, t) from (13) into the
mass conservation Eq. (10), we obtain the following nonlinear
hyperbolic wave equation:64

ht +

(

h
1+n
n +

n + 1

n
βh

1
n

)

hx = 0 . (14)

Solving for the perturbation fields u1, v1, and p1 at order ǫ ,
the consistent surface equation at that order is

ht +

[
h

1+n
n
β + 2nβ + nh

1 + 2n

]
x

+
[
Reh

3
n

β + nh

n3(2 + 7n + 6n2)

× {(2 + 7n + 6n2)β2 + 2nh(2 + 3n)β + 2n2h2 }hx

−h 1+n
n
(2 + 3n)(β + 2nβ + nh)

n(2 + 7n + 6n2)
(cot θhx −Wehxxx)

]
x
= 0. (15)

We consider a uniform solution h(x, t) = hN + η(x, t) of (15),
where η(x, t) is an infinitesimal disturbance from the base state
solution. Substituting the expression for h(x, t) into Eq. (15) and
linearizing the resulting equation, we obtain

ηt + A(hN)ηx + B(hN)ηxx − C(hN)(cot θηxx −Weηxxxx) = 0, (16a)

where

A(hN) =
1

2n + 1

[
nh

1+n
n

N +
1 + n

n
h

1
n

N (β + 2nβ + nhN)

]
, (16b)

B(hN) = Reh
3
n

N

β + nhN
n3(6n2 + 7n + 2)

[
(6n2 + 7n + 2)β2

+ 2nhN(3n + 2)β + 2n2h2N
]
, (16c)

C(hN) =
(3n + 2)(nhN + β + 2nβ)

n(6n2 + 7n + 2)
. (16d)

Now linearizing (16a) with η(x, t) = ei(x−ct) and then calcu-

lating the value of C = Cr + iCi, where Cr =
(

1 + β n+1
n

)

and Ci = 0,
the neutral stability condition with a critical Reynolds number
can be obtained as

Rec =
n2(3n + 2)(n + β + 2nβ)

(n + β)[2n2 + nβ(6n + 4) + β2(6n2 + 7n + 2)]
cot θ. (17)

Notably the zeroth, first order solutions and Cr and Rec are
all dependent on the slip parameter. One can easily recover
the critical Re value for the Newtonian liquid film down a no-
slip inclined wall by putting the slip parameter β = 0 and the
power-law index n = 1 in Eq. (17), which give Rec for our prob-
lem. Substituting β = 0 and n = 1 in Eq. (17), we get Rec =

5
2 cot θ

for a Newtonian falling film, which is exactly three times of the
critical Reynolds number calculated by Yih.19 Using the aver-
age velocity of the film Ua = gh̄2N sin θ/3ν as the velocity scale,

Yih found Rec =
5
6 cot θ in the classical case.19 In the current

work, we have used the free surface velocity V = gh̄2N sin θ/ν

(for β = 0, n = 1) as the velocity scale which is 1
3 times of the

average velocity (i.e., Ua = 3V). Thus, our Rec in the classical
case19 is exactly three times of Yih’s critical Re.

IV. DEPTH-AVERAGED MODEL

Assumption (i) from Sec. III with the continuity equa-
tion renders the cross-stream velocity v = − ∫ y0 ux dy = O(ǫ )
so that the inertia term can be truncated from the cross-
stream momentum equation which produces the pressure
distribution at order ǫ after integration,

if y > yc, p = cot θ(h − y) −Wehxx − r[ux |h + ux], (18a)

if y ≤ yc, p = cot θ(h − y) −Wehxx − r
[
ux |h + ux |yc+

]

+ 2rux |yc− − 2uxγ̇
n−1
0 −

yc∫

y

[
uyγ̇

n−1
0

]
x
dy, (18b)

where yc = h(1− η̄c) defines the location of the imaginary inter-
face separating the Newtonian and power-law layers and γ̇0 =
√

(uy)2 + 4(ux)2. Then, substituting Eq. (18) into the stream-wise

momentum balance gives

Re
(

ut + uux + vuy

)

= 1 + τ
(0)
xy y

+D(2) − cot θhx +Wehxxx, (19a)

where both the lowest order rate of strain τ
(0)
xy and the

second-order viscous terms D
(2) depend on Newtonian and

non-Newtonian fluids. For y > yc, they read

τ
(0)
xy = ruy and D

(2)
= 2ruxx + r[∂xu |h]x, (19b)

whereas for y ≤ yc, we have

τ
(0)
xy =uyγ̇

n−1
0 ,

D
(2)
=

[
vx

(

γ̇n−10 + (n − 1)(uy)
2γ̇n−30

)]
y
+ 4

[
uxγ̇

n−1
0

]
x

+


yc∫

y

[
uyγ̇

n−1
0

]
x
dy

x

− 2
[
rux |yc−

]
x
+ r

[
ux |yc+ + ux |h

]
x
, (19c)

which are completed by the slip velocity condition at the wall
(y = 0) and the tangential, normal stresses continuity at the
free surface y = h(x, t), truncated at order ǫ2,
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uy = 4hxux − vx. (19d)

Let us consider that the assumption (ii) of Sec. III holds,
implying the velocity approximation over the fluid layer is
never far from the flat film solution. This can be expressed by

u = us + ũ
(1), where (20a)

us = ūf0(ȳ) for ȳ ≤ 1 − η̄c , (20b)

us = ū
[
f0(1 − η̄c) + η̄(n+1)/nc g0[(ȳ + η̄c − 1)/η̄c]

]
for ȳ ≥ 1 − η̄c,

(20c)

and η̄c is the local relative thickness of the Newtonian layer at
the free surface. The definition of the velocity approximation
us is based on the local film thickness h(x, t) and a local veloc-
ity scale ū(x, t) that can be related to the rate of strain at the
wall Dxy |y=0 = ū/h + O(ǫ ). Here, ũ(1) accounts for O(ǫ ) devia-
tions of the velocity profile induced by the deformation of the
free surface. The O(ǫ ) corrections of the relation between the

flow rate q = ∫ h0 udy, h, and ū provided below by the flat-film
profile

q =
3(n + β + 2nβ) + (1 − n)η̄(2n+1)/nc

6n + 3
hū ≡ φ(η̄c)hū (21)

can also be included into ũ(1) so that ∫ h0 ũ(1) dy = 0 is assumed
without any restriction.

The local thickness η̄c of the Newtonian layer is defined
by γ̇(ȳ = 1 − η̄c) = s, which reads at order ǫ2 as

s2 =
{

4(usx)
2 +

[
usy + vsx

]2}
ȳ=1−η̄c

. (22)

In the limit η̄c ≪ 1, (22) can be further simplified to yield

s2 =
4n2

(1 + n)2
(ūx)

2 + η̄2/nc
ū2

h2
. (23)

Hence, the Newtonian layer disappears locally if

|ūx | > n + 1

2n
s. (24)

We have implemented the weighted residual technique
and averaged the boundary-layer Eqs. (19) across the film flow
(see Ruyer-Quil et al.54,55 for details). Now, we introduce a

weighting function w(ȳ) and the scalar product 〈· | ·〉 = ∫ h0 ·dy.
An equation of O(ǫ ) consistency can be obtained by choosing
the weight w in such a way that the viscous drag term

∫ yc

0
w(ȳ)

[
n |usy |n−1ũ(1)y

]
y
dy +

∫ h

yc

rw(ȳ)ũ(1)yydy

≡ 1

h

�����
ū

h

�����
n−1
〈Lη̄c ũ

(1) |w〉 +O(ǫ2) (25)

is of order ǫ2. The linear operator Lη̄c is defined as

Lη̄c = ∂ȳ
[
n( f′0)

n−1∂ȳ ·
]

if 0 ≤ ȳ ≤ η̄c,

and

Lη̄c = η̄
(n−1)/n
c ∂ȳȳ · otherwise, (26)

where the thickness of the Newtonian layer is estimated by
η̄c = (sh/ū)n +O(ǫ2).

Two integrations by part of Eq. (25) show that the linear

operatorLη̄c is self-adjoint. We canmake use of q(∫ h0 u(1)dy = 0)
in such a way that the weight function wmust be a solution to
Lη̄c = constant, thereby yielding

if y < yc, w(ȳ) = f0(ȳ), (27a)

if y ≥ yc, w(ȳ) = f0(1 − η̄c) + nη̄(n+1)/nc g0[(ȳ + η̄c − 1)/η̄c].
(27b)

It is noteworthy to mention that the weight w is not pro-
portional to the velocity profile us. The weighted residual
method considered here is therefore slightly different from
the Galerkin method such that w ∝ us. This discrepancy is
an impact of the nonlinearity of the strain to stress rela-
tionship which presents a factor n. Then, we proceed to the
averaging of the boundary-layer Eqs. (19) with appropriate
weights (27). We expand the nonlinear constitutive equation
to compute the viscous terms appearing in the boundary-layer
formulation (19c),

γ̇n−10 = |uy |n−1 + 2(n − 1)(ux)
2 |uy |n−3 +O(ǫ4), (28)

and replace r with γ̇n−1
0
|y=h(1−η̄c).

The resulting averaged momentum Eq. (19) reads

ūt = −Re
[
G̃
ū2

h
hx + F̃ūūx

]
+ Ĩ

(

1 − cot θhx +Wehxxx − ū |ū |n−1
hn+1

)

+J̃
ū

h2
(hx)

2 + K̃
ūxhx
h

+ L̃
ū

h
hxx + M̃ūxx + Ñ

(ūx)2

ū
. (29)

The coefficients F̃ to Ñ of (29) are explicit, but they are pon-
derously functions of n, β, and of the relative thickness η̄c of
the Newtonian layer. The full expressions of the coefficients
F̃, G̃, and Ĩ of the terms of orders ǫ0 and ǫ are provided in
Appendix A which will be useful to compose the value of the
critical Reynolds number at onset. The system of Eqs. (10), (22),
and (29) is consistent up to order ǫ and precisely computed
for second-order viscous terms. The derivation of Eq. (29) has
required a regularization of (2) for n < 3, especially to com-
pute both µeff(0) and dµeff/dγ̇(0) in (28). The full derivation
of the averaged momentum balance (29) for the generalized
Newtonian fluid65 with no-slip was provided by Ruyer-Quil
et al.54,55

A. Shear-thinning film (n < 1)

Equations (10), (22), and (29) are still inextricable to solve
because of the coefficient (Appendix A) dependency on the
relative thickness η̄c of the Newtonian layer, which is thus a
nonlinear function of h, ū, and their derivatives. Therefore, we
further simplify the formulation bymaintaining the asymptotic
behavior of the coefficients when the Newtonian layer is very
thin (i.e., η̄c → 0).
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In this limit, q can be easily substituted for ū. After some algebraic calculation, we finally obtain

Reqt = Re

[
−F(n) q

h
qx +G(n)

q2

h2
hx

]
+ I(n)

[
h(1 − cot θhx +Wehxxx) − q |q |n−1

(φ0h2)n

]
+ r

[
J0(n)

q

h2
(hx)

2 − K0(n)
qxhx
h
− L0(n)

q

h
hxx +M0(n)qxx

]
,

(30)

where φ0 = φ(0) = n/(2n + 1) + β. The coefficients F(n), G(n), . . ., M0(n) are also functions of n and β whose expressions are given
below,

F =

[
2n3(11n + 6) + n2β(4n + 3)(23n + 12) + 6nβ2(2n + 1)(3n + 2)(4n + 3) + 2β3(2n + 1)2(3n + 2)(4n + 3)

]
(4n + 3)(n + β + 2nβ)

[
2n2 + 2nβ(3n + 2) + β2(6n2 + 7n + 2)

] , (31a)

G =
(2n + 1)

[
6n3 + 6n2β(4n + 3) + 3nβ2(3n + 2)(4n + 3) + β3(2n + 1)(3n + 2)(4n + 3)

]
(4n + 3)(n + β + 2nβ)

[
2n2 + 2nβ(3n + 2) + β2(6n2 + 7n + 2)

] , (31b)

I =
(3n + 2)(n + β + 2nβ)2

(2n + 1)
[
2n2 + 2nβ(3n + 2) + β2(n2 + 7n + 2)

] , (31c)

K0 = J0 = −
2n2(n − 1)(2n + 1)(3n + 2)(n + β + nβ)

(n + 1)2(n + β + 2nβ)
[
2n2 + 2nβ(3n + 2) + β2(n2 + 7n + 2)

] , (31d)

L0 = K0/2, M0 = −
(n − 1)(3n + 2)(n + β + nβ)(n + β + 2nβ)

(n + 1)
[
2n2 + 2nβ(3n + 2) + β2(n2 + 7n + 2)

] . (31e)

Still, under the limit of a thin layer of Newtonian fluid, the
strain-rate threshold s is expected to go toward zero. Thus,
the Newtonian layer can be easily removed by O(s) gradi-
ents hx of the film thickness [computed from (24)]. In that
case, the effective viscosity µeff(y = h) at the free surface
is much smaller than its maximum r. The streamwise vis-
cous effects are consequently overestimated by (30) at wher-
ever point the free surface is non-weakly distorted. To cor-
rectly estimate these viscous effects, one must consider those
film regions where the effective viscosity reaches its max-
imum. Moreover, at the free surface, the contributions of
the effective viscosity to the streamwise viscous diffusion

terms of the averaged momentum balance can be easily
computed by substituting r for the effective viscosity µeff(y
= h) into (29). However, it is a difficult task to compute
the leading contributions of the bulk and wall regions to
the streamwise viscous diffusion terms of the averaged
momentum balance. A straightforward but unique way to pro-
ceed with the analysis is to evaluate the effective viscosity
in the bulk region from its value at the wall µeff(y = 0) ≈[
|q |/(φ0h2)

]n−1
= h(n−1)/n + O(ǫ ), expect a consistent viscos-

ity inside the layer and calculate the O(ǫ2) viscous contribu-
tion to the averaged momentum equation (see Appendix B of
Ruyer-Quil et al.54,55). Then, we obtain

Reqt = Re

[
−F(n) q

h
qx +G(n)

q2

h2
hx

]
+ I(n)

[
h(1 − cot θhx +Wehxxx) − q |q |n−1

(φ0h2)n

]

+r(h, q)

[
J0(n)

q

h2
(hx)

2 − K0(n)
qxhx
h
− L0(n)

q

h
hxx +M0(n)qxx

]

+h(n−1)/n
[
Jw (n)

q

h2
(hx)

2 − Kw (n)
qxhx
h
− Lw (n)

q

h
hxx +Mw (n)qxx

]
, (32)

where Jw, Kw, Lw, and Mw are defined as

Jw =
2
[
n2(3n2 + 13n + 8) + nβ(15n3 + 52n2 + 52n + 16) + β2(12n4 + 50n3 + 70n2 + 40n + 8)

]
(n + 2)(n + 1)[2n2 + 2nβ(3n + 2) + β2(6n2 + 7n + 2)]

, (33a)
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Kw = Mw =

2
[
n2(5n + 4) + nβ(15n2 + 22n + 8) + β2(12n3 + 26n2 + 18n + 4)

]
(n + 1)[2n2 + 2nβ(3n + 2) + β2(6n2 + 7n + 2)]

, (33b)

Lw =

[
n2(17n2 + 23n + 8) + nβ(39n3 + 89n2 + 66n + 16) + β2(24n4 + 76n3 + 88n2 + 44n + 8)

]
(n + 1)2[2n2 + 2nβ(3n + 2) + β2(6n2 + 7n + 2)]

, (33c)

and r(h, q) refers the evaluation of the effective viscosity at the free surface µeff(y = h) from h and q,

r(h, q) ≡
[
s2 + v2s x + 4(usx)

2
] (n−1)/2���y=h, (34a)

where

v2s x + 4(usx)
2���y=h =


2(2n + 1)

n + 1

( q

h

)

x


2

+

2n + 1

n + 1

 − 2
hxqx
h

+ q*,2
(hx)2

h2
− hxx

h
+-
 + qxx


2

.

(34b)

The averaged momentum equation derived by Ruyer-Quil
and Manneville17 can be retrieved by substituting n = 1 and
β = 0 into (32) for the Newtonian case with the no-slip
condition.

B. Shear-thickening film (n > 1)

In shear-thickening case, preventing the leading order
terms in the limit of s → 0, the averaged momentum Eq. (29)
reduces to (for 1 < n < 3)

Reqt = Re

[
−F(n) q

h
qx +G(n)

q2

h2
hx

]
+ I(n)

[
h(1 − cot θhx +Wehxxx) − q |q |n−1

(φ0h2)n

]

+

[ |q |
φ0h2

]n−1
×
[
J1(n)

q

h2
(hx)

2 − K1(n)
qxhx
h
− L1(n)

q

h
hxx +M1(n)qxx

]
. (35)

The coefficients are given as

J1 = −
(3n + 2)

[
n(8n4 + 24n3 − 8n2 − n + 1) + 2n2β(16n3 + 52n2 + 8n − 9) + 6nβ2(24n3 + 10n2 − 3n − 1) + β

]
3(2n − 1)(4n + 1)[2n2 + nβ(6n + 4) + β2(6n2 + 7n + 2)]

, (36a)

K1 = −
n(2n + 1)(3n + 2)

[
n(2n + 7) + 2nβ(4n + 15) + 12β2(4n + 1) + 7β

]
3(4n + 1)[2n2 + nβ(6n + 4) + β2(6n2 + 7n + 2)]

, (36b)

L1 =
(2n + 1)(3n + 2)

[
2n(12n3 + 36n2 + n − 1) + 3nβ(24n3 + 82n2 + 37n + 1) + 24nβ2(24n2 + 7n + 1) − 2β

]
6(2n − 1)(3n + 1)(4n + 1)[2n2 + nβ(6n + 4) + β2(6n2 + 7n + 2)]

, (36c)

M1 =
n(2n + 1)(3n + 2)

[
2n(2n + 7) + 4nβ(4n + 15) + 24β2(4n + 1) + 14β

]
6(2n − 1)(4n + 1)[2n2 + nβ(6n + 4) + β2(6n2 + 7n + 2)]

. (36d)

We have considered the power-law index n within the range
of 1 < n < 3 for the shear-thickening case because the rheo-
logical estimate of the parameters for shear-thickening fluids
in Table I shows that the minimum and maximum values of n
are 1.3 and 2.4, respectively. Moreover, the properties of the

shear-thickening fluid at n > 3 change and become more like
a solid in nature.58,59 In the Newtonian limit n→ 1 with no-slip
β = 0, the averaged momentum equation derived by Ruyer-
Quil and Manneville17 can be retrieved. However, the coeffi-
cients of the stream-wise viscous diffusion terms q(hx)2/h2 and
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TABLE I. Values of parameters from rheological estimation of the xanthan gum solutions in water (sets 1,60,61 2, and 3,62

surface tension, σ = 65 mN/m, and density, ρ = 995 kg/m3) and cornstarch dispersions in ethylene glycol63 (sets 4, 5, and
6, surface tension, σ = 48 mN/m, and density, ρ = 1113 kg/m3). The viscosity µ0 of the Newtonian plateau is assumed to
correspond to the solvent viscosity. Values of the Kapitza number are evaluated for an inclination angle θ = 15◦.

Set number Concentration µn (Pa sn) n µ0 (Pa s) γ̇c (s−1) γ̇ctν Γ

1 500 ppm 0.04062 0.607 0.08 0.18 1.8 × 10−3 378
2 1500 ppm 0.359 2 0.40 1.43 0.1 1.7 × 10−3 48.7
3 2500 ppm 0.991 3 0.34 7.16 0.05 1.2 × 10−3 13.0
4 33% 8 1.3 0.016 10−9 1.3 × 10−10 0.01
5 35% 6 1.55 0.016 2.1 × 10−5 2.8 × 10−6 0.0077
6 38% 1.8 2.4 0.016 0.034 5.2 × 10−3 0.005

qxhx/h at n = 1 and β = 0 are as K1 = 9/2 and J1 = 4. It is note-
worthy to mention that these terms are nonlinear and do not
contribute to the linear stability analysis of the Nusselt base
flow.54,55

V. LINEAR STABILITY ANALYSIS

A. Orr-Sommerfeld analysis

We have considered the linear stability of the Nusselt
uniform film solution in this section. We first linearize the
governing Eqs. (4) with a fluid modeled by a power-law and
a Newtonian behavior at a low rate of strain.54,55 Then, we
perturb the basic state solution with h = 1,

if y < 1 − sn, U(y) = 1

φ(β)
f0(y)

else U(y) =
1

φ(β)

(

f0(1 − sn) + sn+1g0[s−n(y + sn − 1)]
)

,

(37a)

P(y) = cot θ(1 − y). (37b)

Then, introducing a stream function and decomposing it on
normal modes,

u = U +ℜ
(

ψ′(y)eik(x−ct)
)

, v = ℜ
(

−ikψ(y)eik(x−ct)
)

,

hi = 1 − sn +ℜ
(

fie
ik(x−ct)) ,

where φ(β) =
(

1 + β n+1
n

)

and k and c are the wavenumber and
phase speed, respectively. In addition, ℜ stands for the real
part, and hi refers to the position of the imaginary interface
separating the Newtonian and non-Newtonian regions of the
flow. Then, we obtain an Orr-Sommerfeld eigenvalue problem
(following the standard procedure),

if y < 1 − sn, ikRe
[
(U − c)(D2 − k2)ψ − ψU′′

]
=

(

D2 + k2
) [
n(U′)n−1

(

D2 + k2
)

ψ
]

−4k2D
[
(U′)n−1Dψ

]
, (38a)

else, ikRe
[
(U − c)(D2 − k2)ψ − ψU′′

]
= r

(

D2 − k2
)2
ψ, (38b)

where D ≡ d/dy and again r = sn−1 is the ratio of the viscosity
at the free surface and at the wall. The system of equations

in (38) is closed by the boundary conditions prescribed at the
wall and at the interface,

ψ′(0) = βψ′′(0), ψ(0) = 0, (38c)

k2ψ(1) + ψ′′(1) +U′′(1)
ψ(1)

c −U(1) = 0, (38d)

ψ(1)

φ(β)(c −U(1))
(

Wek3 + cot θk
)

+ kRe[U(1) − c]ψ′(1)

+ ir
[
ψ′′′(1) − 3k2ψ′(1)

]
= 0. (38e)

The amplitude of the deformation of the imaginary interface is
given by

fi = nsn−1(k2ψ |yc− + ψ′′ |yc− ), (38f)

where yc = 1 − sn refers to the location of the interface for the
base flow. The continuity of the velocity implies the continuity
ofψ andψ′ at y = yc. The continuity of stresses at the imaginary
interface (yc = 1 − sn) leads to

ψ′′ |yc+ =
[
nψ′′ + (n − 1)k2ψ

]
|yc− , (38g)

sn[ψ′′′] |yc+ =
{
sn

[
nψ′′′ + (n − 1)k2ψ′

]
− (n − 1)

[
ψ′′ + k2ψ

]}
|yc− .
(38h)

We solve the system of the linearized Eqs. (38) by continuation
using AUTO07P software,66 and the results are presented and
discussed in Sec. VI.

B. Whitham wave hierarchy

The stability analysis of the low-dimensional model (10),
(23), (29), and (21) will lead to a dispersion relation equation
which can be written as

nĨ(c − 1) + rk2
{
c M̃ + nL̃(2φ − 1) + M̃[n − 2(n + 1)φ]

}
− ikRe

{ [
c2 − c(F̃ − n + 2(n + 1)φ) ) + nG̃(2φ − 1)

+ F̃(2(n + 1)φ − n)
]
+ nĨ

(

Fr−2 +
We

Re
k2

)

(2φ − 1)
}

= 0, (39)

where φ is a function of the relative thickness η̄c of the Newto-
nian layer, defined in Eq. (21). The coefficients Ĩ, F̃, G̃, L̃, M̃, and
φ are computed for the base state relative thickness η̄c = sn.

Phys. Fluids 31, 013102 (2019); doi: 10.1063/1.5078450 31, 013102-9

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

The dispersion relation (39) corresponds to a wave hier-
archy situation considered by Whitham64 and can be reset in
the canonical form,54,55

c − ck(k) − ikRe[c − cd−(k)][c − cd+(k)] = 0. (40)

Dispersion relation (40) can be split into two parts with a π/2
phase shift. Each part of the above relation corresponds to a
different kind of waves. The first kind of waves from (40) is
obtained by taking the limit Re → 0. In this limit, the velocity
field and thus the flow rate q are utterly slaved to the evo-
lution of the film thickness h and the waves of the first kind
are governed by the mass balance Eq. (10) or, equivalently,
the kinematic boundary condition (3c). These kinematic waves
result from the kinematic response of the free surface to a
perturbation and propagate at the speed

ck =
nĨ + rk2

{
nL̃(1 − 2φ) + M̃[2(1 + n)φ − n]

}
nĨ + rk2M

. (41)

In the limit k → 0, we obtained ck = 1 which in the dimen-
sional unit corresponds to the velocity scale V as already
noticed in Sec. III. We known the fact that the dependence
of ck on the wavenumber k arises from the viscous diffusion
of the momentum in the direction of the flow. This viscous
dispersion effect was first noted in the work of Ruyer-Quil
et al.67

In contrary, the second kind of waves corresponds to the
limit Re → ∞. These dynamic waves are the responses of the
film to the variation in momentum, hydrostatic pressure, and
surface tension which are induced by deformation of the free
surface. These waves propagate at the speed of

cd± =
1

2

(

F̃ − n + 2(n + 1)φ ±
√
∆

)

, (42)

with ∆ = [F̃ − n + 2(n + 1)φ]2 + 4{[n − 2(n + 1)φ]F̃

+n(1 − 2φ)G̃} + 4n(1 − 2φ)ĨF̃r−2, (43)

where the coefficients can be computed at η̄c = sn and

F̃r
−2
(k2) = (cot θ + Wek2)/Re. Surface tension induced the dis-

persion of dynamic waves. The temporal stability condition of

the base state can be written in terms of the speeds ck and cd±
for the kinematic and dynamic waves,64

cd− 6 ck 6 cd+ . (44)

The condition of the base state to be marginally stable is
cd− = ck or cd+ = ck. In the present case, only the latter con-
dition can be achieved. The instability threshold arises at
k = 0 which reflects the instability of the long-wave nature and
leads to

Fr2 =
Re

cot θ
=

nĨ

(n + 1)(1 − F̃) − nG̃
. (45)

VI. RESULTS AND DISCUSSIONS

A. Linear stability results

The generalized Orr-Sommerfeld equation for the con-
sidered flow system along with the boundary conditions is

solved numerically using the spectral collocation method by
the help of public domain software.66 Different prospects of
instability behavior depending on various parameters, with
respect to small disturbances for the considered flow system,
are elaborated in this section. We have discussed the influence
of the wall velocity slip on the stability features of the flow for a
wide range of flow parameters, which includes the growth rate
of eigenmode, neutral stability boundary, kinematic/dynamic
wave behavior, and the role of the Reynolds number.

We also have deliberated the effect of the viscosity index
(n) and traveling-wave solutions of the system. Eigenvalues are
calculated numerically, and limiting no-slip (β = 0) results are
compared with the available results for the similar flow over a
rigid inclined by Ruyer-Quil et al.54,55

In Fig. 2, we have compared the spatial growth rate and
the marginal stability conditions for given fluid properties
such as the flow rate, Reynolds number, and inclination angle
with respect to different slip parameter β, when the threshold
γ̇c, separating the shear-thinning and the Newtonian behav-
iors of the fluid, is varied. As expected, both the marginal (neu-
tral) stability curve in the Re–kr plane and the spatial growth
rate −ki vary significantly with the slip parameter β, which

FIG. 2. Orr-Sommerfeld results (38) for xanthan gum solu-
tions: (a) Spatial growth rate (−k i ) versus wavenumber (kr )
at the Reynolds number Re = 100 and (b) marginal stability
curves in the (Re, k) plane with the cut-off wavenumber kc .
Labels of the curves refer to the parameter sets in Table I
for shear-thinning xanthan gum solutions at an inclination
angle θ = 15◦. The different slip parameter values are
β = 0.0, 0.05, and 0.08 (We , 0). The curve with β = 0.0
recovers the result of Ruyer-Quil et al.54,55
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FIG. 3. Orr-Sommerfeld results (38) for cornstarch solu-
tions: (a) Spatial growth rate (−k i ) as a function of the
wavenumber (kr ) at Re = 100. (b) Marginal stability curves
in the Re–kr plane with the cut-off wavenumber kc . Labels
refer to the parameter sets in Table I for shear-thickening
cornstarch solutions at an inclination angle θ = 15◦ with
different slip values β = 0.0, 0.05, and 0.08 (We , 0).
The curve with β = 0.0 recovers the result of Ruyer-Quil
et al.54,55

underlines a mixed kind role on the linear instability of the
flow. The results presented in Fig. 2 are obtained for the
three shear-thinning fluids whose properties are detailed
in Table I. Figure 2(a) presents the behavior of the spatial
growth rate −ki for Re = 100, θ = 15◦, and Fig. 2(b) shows the
marginal/neutral stability curves, i.e., the cut-off wavenum-
ber kc versus the Reynolds number Re. At the considered
value of Re, the wall velocity slip is trying to suppress the
most excited perturbation waves by decreasing the maximum
growth rate and the range of unstable wave numbers. Now,
the interrogatory is whether or not this comment true for
all values Re? We have found an antithetical answer from
Fig. 2(b). According to Fig. 2(b), at the onset of the instability
for comparatively long waves, the slip parameter is desta-
bilizing the flow by lowering the critical Reynolds number
(Rec). A resembling result was found by Samanta et al.50 for
the case of a Newtonian film flow over a slippery incline.
However, after certain values of the Reynolds number and
for the higher wave numbers, the wall slip is trying to sta-
bilize the flow by diminishing the spatial growth of unstable
modes.

A similar kind of result is plotted in Fig. 3 for type-4 and
type-5 fluids of Table I. Qualitative behavior of the spatial

growth rate and marginal stability curves is analogous to that
of the type-1, 2, and 3 fluids in Table I. However, the range
of unstable wave numbers is quite high as compared to ear-
lier cases in Fig. 2. Correspondingly, we see the existence of
the bifurcation value of the Reynolds number Reb in Figs. 2(b)
and 3(b), along which the role of the wall slip parameter on the
instability of the flow is changing. The values of Reb remain
between 20 and 30 for the type-1, 2, and 3 fluids and between
10 and 20 for the type-4 and type-5 fluids in Table I.

Considering the most unstable mode for each Re at
the marginal condition, we have plotted the variation of
phase speed for shear-thinning and shear-thickening flow in
Figs. 4(a) and 4(b), respectively. Moreover, the slip parameter
effect is taken into account. Quite obviously, the phase speed c
of the most excited mode is decreasing for all the cases, when
the viscous force is getting stronger. From earlier results, we
know that the long wave instability of the system occurs at
a smaller range of Re and the phase speed is comparatively
high for long waves. Wall slip velocity always tends to dimin-
ish the phase speed monotonically, and this may be due to
the decrease in wall shear when the slip parameter increases.
The slip effect is not very promising for shear-thickening
cornstarch solutions.

FIG. 4. Orr-Sommerfeld results (38): Phase speed c at
marginal conditions versus Re plotted for (a) shear-thinning
xanthan gum solutions and (b) shear-thickening cornstarch
solutions at an inclination angle θ = 15◦ with different slip
values β = 0.0,54,55 0.05, and 0.08. Labels refer to the
parameter sets in Table I.
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FIG. 5. The solutions to the dispersion relation of (10) and
(32) show the cut-off wave number kc versus the Reynolds
number Re at an inclination angle θ = 15◦ for (a) n = 0.607
and (b) n = 0.34 with different slip values β = 0.0,54,55

0.05, 0.1, and 0.2.

In Fig. 5, neutral stability boundaries are drawn for differ-
ent shear-thinning fluids using the dispersion relation (10) and
(32) which are derived from the averaged kinematic bound-
ary condition and averagedmomentum equation, respectively.
The wall slip effect considered for two different regimes:
(a) the inclined wall is a hydrophobic or a slippery type
(0 ≤ β < 0.1) and (b) the wall boundary is a porous kind sub-
strate with less permeability (0.1 ≤ β < 0.4).21,47,68–72 The qual-
itative impact of the wall slip on the instability is similar to
the results of Fig. 5 for all values of β. It has a destabilizing
influence at the onset of the free surface instability, where
long waves are most excited. Very interestingly for stronger
viscous forces, the moderate to shorter waves are becoming
less unstable in the presence of the wall slip as compared to
the no-slip case. It is also clear that as the n value decreases,
the unstable region in Re–k plane shrinks, indicating a stabi-
lizing role of the effective viscosity and the relative thickness
by reducing the energy transfer from the base flow to the
perturbed flow.

In Fig. 6, we have presented the variations of the free
surface velocity u with respect to the relative thickness sn

of the shear-thinning and shear-thickening fluids reported in
Table I. The effects of n and sn on the stability of the uni-
form Nusselt film solution (under Navier slip condition) are
shown by capturing the variation of kinematic wave speed
at the free surface. Interestingly, ui remains less than the
one whatever the values of n and sn. Moreover, the kine-
matic wave speed is a monotonically increasing/decreasing
function of sn for the power-law index n < 1/n > 1. The
smaller/larger power-law index (n) and the thinner Newto-
nian layer increase/decrease the speed of the kinematic wave
at the free surface. Usually, a decrease in the kinematic wave
speed hints the dispersive role of the streamwise second-
order viscous terms, which we can refer to as a viscous dis-
persive effect.67 Corresponding results for the no-slip flow
(earlier work by Ruyer-Quil et al.54,55) are available in Fig. 6(a).
Comparing our slip flow results with the no-slip case, we
have noticed that the kinematic wave speed in the case of
the slip flow for n < 1 and n > 1 is comparatively high and
low, respectively, than that of the flow with the rigid boundary
(no-slip).

How the dynamic wave speeds (which compares the
speed of the surface capillary-gravity waves to the fluid veloc-
ity) are changing as the function of the Froude number due
to wall slip effects is shown in Fig. 7. Notably, surface tension
plays a dispersive role for dynamic waves, analogous to viscos-
ity for kinematic waves. The parameter n is varied to check the
scenario for both shear-thinning and shear-thickening fluids.
We have noticed that dynamic wave speed cd+ is overall a

monotonically decreasing function of F̃r
2
for each slip and no-

slip case. Moreover, the wall slip increases the dynamic wave
speed because of the change in the flow rate and shear rate
inside the film flow for the non-zero slip parameter. Although

FIG. 6. Velocity at the free surface ui as a function of the relative thickness
for shear-thinning xanthan gum solutions (n = 0.34, 0.4, and 0.607), and shear-
thickening cornstarch solutions (n = 1.3, 1.55, and 2.4) at an inclination angle
θ = 15◦ with a slip parameter value (a) β = 0.0 and (b) β = 0.08.
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FIG. 7. Dynamic wave speed cd + as a function of F̃r
2

for
shear-thinning fluids (a) n = 0.607 and (b) n = 0.34 and for
shear-thickening fluids (c) n = 1.3 and (d) n = 2.4 with differ-
ent slip values β. In each sub-figure, β = 0.0 curves validate
the earlier no-slip case results of Ruyer-Quil et al.54,55

the behavior of kinematic wave speed differs depending on
the value of n, the qualitative nature of dynamic wave speed
is unaltered for n < 1 and n > 1. However, dynamic wave speed
is comparatively high for shear-thickening fluids. Overall, it
may be said that a slippery substrate, therefore, contributes
to destabilizing the dynamic waves but simultaneously
emphasizing the viscous stabilizing dispersion of kinematic
waves.50

The movement with respect to the power-law index n of
the curve cd+(Fr

2) governing the dynamic wave speed is illus-
trated in Fig. 8. Lowering the power-law index slows down
the dynamic waves. Moreover, dynamic waves are basically

capillary-gravity waves advected by the free surface fluid
layer which travels at half speed. The reduction in dynamic
wave speed cd+ conversely contributes to maintaining the gap
between speeds of dynamic and kinematic waves. However,
such a configuration enhances the stabilizing of the decreas-
ing kinematic wave speed by the streamwise viscous diffusion.
As mentioned by Samanta et al.,50 the dispersive effects of vis-
cosity and surface tension are always tried to stabilize since
they contribute to reducing the speed gap between dynamic
and kinematic waves by decelerating kinematic waves and
conversely accelerating dynamic waves. The downwardmove-
ment of the curve cd+(Fr

2) is thus accompanied by a shift to

FIG. 8. Dynamic wave speed cd + as a function of F̃r
2

for (a)
shear-thickening and (b) shear-thickening when the inclined
wall is slippery with the slip parameter β = 0.08.
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FIG. 9. Speed c of the traveling wave as a function of the
wavenumber k/kc normalized by the cut-off wavenumber kc

with the values of Re = 20 and θ = 15◦ shown for (a) β = 0.0
and (b) β = 0.08. The Hopf bifurcation at k equals the cut-off
wavenumber kc that is indicated by square symbol. Dotted
(dashed-dotted) lines refer to the locus of solutions made
of two or four γ1 waves. The solutions of 500 ppm shear-
thinning xanthan gum solution in water (set 1 in Table I).

the left and crossing of the horizontal axis at cd+ = 1 signaling
a decrease in the instability threshold. As depicted in Fig. 8(b),
for shear-thickening fluids, themovement of the curve cd+(Fr

2)
indicates that increasing n is stabilizing the system by raising
the speed of dynamic waves but also stabilizing by augment-
ing the speed simultaneously of kinematic waves. In this case,
the curves cd+(Fr

2) after crossing at cd+ = 1, are being displaced
to the right which reflecting that the instability triggered at
larger values of the critical Froude number. Note that the fig-
ures capture the variation of the curve cd+(Fr

2) for a slippery
wall with β = 0.08. Correspondingly, no-slip case results are
available in the work of Ruyer-Quil et al.54,55

B. Bifurcation results

We have reported the bifurcation diagrams in the plane
wavenumber versus speed of the traveling-wave branches in
Fig. 9 considering the shear-thinning case, for the fluid prop-
erties of the three xanthan gum aqueous solutions reported
in Table I over a slippery wall with β = 0.08 and a rigid wall
(β = 0.0) at a moderate inclination angle θ = 15◦ and Re = 20.
The parameters γ1 and γ2 refer to the different type of waves.
The first branch of slow-wave solutions arises for the most
dilute solution, from the marginal stability condition k = kc
through a Hopf bifurcation. Unlike the no-slip case, the num-
ber of secondary branches is found through period doubling
of this first branch. We denote the principal branch of slow
waves by γ1 and the secondary branch of fast waves by γ2.
The other secondary waves bifurcating from the principal γ1
branch are slow. The wrinkling of the solution branches in the
k–c plane and the onset of numerous secondary branches are
consequences of the interaction between the typical length
of the capillary ripples preceding or following the waves and
the wavelength. The bifurcation diagram is quite complicated
here. For the bifurcation diagram displayed in Fig. 9, traveling-
wave solutions are found at larger k than the cut-off wave
number kc which corresponds to a stable Nusselt uniform film
flow. Traveling waves, therefore, bifurcate sub-critically from
the Nusselt solution. The wall slip influence does not change
the qualitative behavior of the bifurcation diagram. In con-
gruence with the no-slip case, the onset of sub-criticality is

here related to the large viscosity ratio between the wall and
the free surface. The cut-off wavenumber is determined by
the effect of the free-surface viscosity, and linear waves are
efficiently damped by it. Finite amplitude disturbances may
survive viscous damping by removing the Newtonian layer and
thus significantly lower the viscosity at the free surface.54,55

Figure 10 presents the amplitude hmax − hmin versus the
frequency f of the principal branch of traveling-wave solu-
tions for a xanthan gum solution (parameter set 2 in Table I) at

FIG. 10. Effect of the wall slip on the amplitude (hmax − hmin) as a function of fre-
quency (f ) at Re = 100. It shows the sub-critical onset of traveling waves when
the frequency is varied from the cut-off frequency f c . The inclination angle is
θ = 15◦, and the other parameters correspond to a shear-thinning xanthan gum
solution (set 2 in Table I). Traveling wave solutions have been computed enforcing
the open-flow condition (〈q〉 = φ0). The solid line refers the case of β = 0.
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the slip parameter β = 0.05, 0.1, and 0.2. The other parameters
used are Re = 100 and θ = 15◦. In order to enable comparisons
with the wave-trains emerging from the time-dependent sim-
ulations of the spatial response of the film to a periodic exci-
tation at frequency f, the integral constraint 〈q〉 = φ0 has been
enforced.73 Traveling waves revolt at the cut-off frequency fc
from the Nusselt solution (hmax − hmin = 0). The presence of
the slippery substrate significantly alters the dispersion of the
frequency f for the amplitude hmax − hmin, and the influence
is not uniform. The frequency f is achieving a higher/lower
order value with respect to the slip parameter, depending
on the critical range of amplitude hmax − hmin. The wall
slip parameter is removing the twist from the dispersion of
(hmax − hmin = 0), which was present in the no-slip case.

VII. CONCLUSIONS

The hydrodynamic stability of the non-Newtonian free
surface flow down a slippery inclined substrate is studied.
The analysis involves solving the Orr-Sommerfeld eigenvalue
problem and using the long-wave theory together with the
weighted-residual method. Moreover, a set of coupled evo-
lution equations of a power-law film flow has been derived
within the framework of lubrication approximation using the
weighted-residual approach. A convincing agreement of the
results has been found in different cases. Special attention is
paid to the effects of the wall velocity slip on the instability of
the considered flow system. The main objective is to predict
the parameter region in which the flow is unstable and how
the velocity slip can modify the stability region and parameter
range.

We have derived two-dimensional models which are
made of the exact mass balance equation and an averaged
momentum equation and formed a set of two coupled evo-
lution equations for the film thickness h and the flow rate q.
Since the flow rate and the film thickness are, respectively,
explicitly and implicitly dependent on the wall slip parameter,
the solutions of model equations also rely on wall slip velocity.
Consequently, the Orr-Sommerfeld solutions, namely, eigen-
modes and eigenvectors, are altered by the slip effect because
of the change in the base velocity. Following the argument
of Ruyer-Quil et al.,54,55 we have necessarily made an adjust-
ment at the first order of inertial terms to adequately cap-
ture the onset of the instability, whereas consistency at the
second order of the viscous terms enables us to accurately
account for the damping of the short waves by streamwise

viscous diffusion. However, it is not possible to consistently
account for the streamwise viscous diffusion as the strain rate
goes to zero. Such difficulty is avoided by introducing a bound
to the effective viscosity and a Newtonian plateau at a low
strain rate and dividing the flow into a Newtonian layer over a
non-Newtonian bulk separated by a fake interface.

Our results show that the velocity-slip boundary condi-
tion promotes the onset of the instability and the wall slip
has a destabilizing effect by lowering the critical Reynolds
number. Consequently, long waves are more unstable as the
slip parameter increases. However, at the moderate to large
wave numbers, away from the instability threshold, a slippery
substrate contributes to the weakening of instability. Thus
the spatial growth rate of the system is increasing for small
wave numbers with respect to the slip, followed by a bifur-
cation when the wave number becomes exceeding its critical
value. This unexpected effect has been observed irrespective
of whether the fluid is a shear-thickening or shear-thickening,
and the results are consistent with that of the Newtonian film
flow down a slippery wall.50 This is the reason why the slip at
the boundary at high stresses may be related to the entry flow
instability instead of only the near wall instability.

We have captured the free surface velocity, dynamic wave
speed, and traveling wave solution with the Navier-slip condi-
tion at the wall. The wall velocity slip enhances and reduces
the free surface velocity of the disturbances for power-lay
indexes n < 1 and n > 1, respectively. We see a uniform
decrease in dynamic wave speed as a function of the Froude
number, but the wall slip ameliorates the speed of dynamic
waves, which may be one of the reasons for destabilization at
the onset of the instability. The higher value of the slip param-
eter displays a significant effect on the traveling waves and
the free surface amplitude. We expect all these findings will
give a clear understanding to the readers about the wall slip
effects on this particular class of flow problems. Finally, results
and discussions concluded that a slippery or hydrophobic sur-
face with non-zero wall velocity can be used as a passive
control option for Newtonian as well as non-Newtonian film
flows.

APPENDIX: COEFFICIENTS OF THE
NEWTONIAN-POWER-LAW MODEL WITH SLIP

The coefficients of (29) are presented in a fraction form
X̃ = X̃a/X̃b.

F̃a = 315(n + 1)2
[
2n3(7n + 3) + n2(4n + 3)(13n + 6)β + 3n(2n + 1)(3n + 2)(4n + 3)β2 + (2n + 1)2(3n + 2)(4n + 3)β3

]
+n(n − 1)η̄2+1/nc

(

105(4n + 3)
[
n2

(

n(34n + 35) + 8
)

+ 2n(n + 1)(3n + 2)(12n + 5)β + 6(n + 1)2
(

n(6n + 7) + 2
)

β2
]

+n(2n + 1)η̄2+2/nc

[
28(n − 1)(n + 1)2(3n − 7)(4n + 3)η̄c − 15(n − 6)(2n + 1)(3n + 2)(4n − 3)

]
+ 14(4n + 3)η̄1+1/nc

[
3(2n + 1)

(

6n + n2
(

9n(n − 4) − 4
)

+ (n + 1)(2n + 1)
(

nβ(6n − 23) + 6β
)

)

+ 10(n − 1)(n + 1)2(3n + 2)(n + β + nβ)η̄c
])
,

(A1a)
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F̃b = 21(n + 1)(2n + 1)(4n + 3)

(

15(n + 1)
[
2β2 + nβ(7β + 4) + n2

(

6β(1 + β) + 2
)]

+ 2n(n − 1)η̄2+1/nc

[
10(3n + 2)(n + β + nβ) + (2n + 1)(3n − 7)η̄1+1/nc

])
, (A1b)

G̃a = 315n3(n + 1)
(

n(4β + 2) + 3β
)

− (n − 1)η̄2+1/nc

(

105n2(4n + 3)
[
n(10n + 7) + 4(n + 1)(3n + 2)β

]
+n(2n + 1)η̄2+2/nc

[
28(n − 1)(n + 1)2(3n − 7)(4n + 3)η̄c − 15(n − 6)(2n + 1)(3n + 2)(4n − 3)

]
+ 14(4n + 3)η̄1+1/nc

[
3(2n + 1)

(

6β + n
[
6 + 9β + n

(

3n2 − 25n + 3 − 3β(6n + 5)
)] )

+ 10(n − 1)(n + 1)2(3n + 2)(n + β + nβ)η̄c
])
, (A1c)

G̃b =
1

n + 1
F̃b, (A1d)

Ĩa = 5(n + 1)(3n + 2)
[
3(n + β + 2nβ) + 2(n − 1)η̄2+1/nc

]
, (A1e)

Ĩb =
1

21(2n + 1)(4n + 3)
G̃b. (A1f)
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