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Abstract: This study proposes a new modelling approach for studying low-frequency oscillations (LFOs) in a droop controlled
islanded microgrid. Due to the absence of inertia, these sources are more vulnerable to power and frequency oscillations. Their
quick response can introduce faster electrical dynamics in the system which should be monitored from time to time. To ease the
analysis process, this study proposes a simplified method for finding LFO in the microgrid. Inspired from the small-signal
automatic generation control model of the conventional grid, a transfer function based closed-loop small-signal model of
inverter-based islanded microgrid is presented in this study to study power-sharing among the various inverters. The proposed
model uses the concept of dynamic power flow through the network to find the power output of each source following load
perturbations in a system. Time domain simulation results and eigenvalue analysis is provided to verify the effectiveness of the
proposed small-signal model. By comparing the results obtained with actual system simulation in MATLAB/Simulink, it is found
that the proposed simplified model is able to predict the stability margin and the LFO of the system without using actual detailed
state-space modelling procedure.

 Nomenclature
vid, viq dq components of inverter voltage
vid

∗ , viq
∗ dq components of reference voltage of inverter

vTd
∗ , vTq

∗ dq components of reference output voltage of inverter
vTd, vTq dq components of output voltage of inverter
iLd

∗ , iLq
∗ reference dq components of coupling inductor current

iLd, iLq dq components of coupling inductor current
iTd, iTq dq components of output current of inverter
iLineDQ dq components of connecting line currents
iLoadDQ dq components of load currents
vbDQ dq components of bus voltage
mp, nq active and reactive power droop coefficients
ωn nominal frequency set point of DG
Vn nominal d-axis voltage set point of DG
F feed-forward gain of voltage controller
ω operating frequency of DG
ωref frequency of reference frame
δ difference of angle between the individual reference

frame and common reference frame
Pins, Qins instantaneous value of active and reactive power
Pfun, Qfun average value of active and reactive power
xMG microgrid states
Pinii, Qinii initial value of active and reactive power supplied by i

th inverter
Pcali, Qcali ith inverter instantaneous active and reactive power

after lag of digital control
AMG microgrid state matrix
p
~

i, j, q
~

i, j active and reactive power through a line connecting
bus i and j

Spv, Spd dynamic phasor coefficients for calculation of active
power

Sqv, Sqd dynamic phasor coefficients for calculation of reactive
power

ΔPLi resultant initial load power shared by the ith inverter
PLi

j initial contribution of ith inverter to jth load

1 Introduction
In microgrids, distributed generations (DGs) are extensively used
to supply power from renewable energy sources. These DGs supply
power to the locally distributed loads through voltage source
inverters. These power electronic-based technologies improve the
control capabilities of DGs. However, due to the absence of inertia
as compared to conventional generators, these microgrids have
reduced stability margins [1]. Therefore, following a fault or a
disturbance, either small or large, these systems give rise to
different modes of oscillations. For the islanded operation of
microgrids, droop control method is extensively used for power-
sharing among sources as it does not require a communication link
to control. Inverter-based DGs operate in parallel under droop
algorithm to supply load while maintaining bus voltages and
system frequency [2].

State-space small-signal analysis is well established in the
literature for the study of oscillations in conventional systems. It
has also been used extensively for the past decade in microgrids to
obtain various frequency modes [3]. In [4, 5], a detailed state-space
model for stability analysis of inverter-based islanded microgrid
with passive loads is presented and the same has been widely
followed. After this model, many studies have been presented in
the literature to model droop controlled islanded microgrids. In [6,
7], the impact of induction motor and converter type loads on
microgrid stability are presented, respectively. Different
heterogenous droop schemes are compared in [8] based on their
transient performance. These studies conclude that various
frequency modes in islanded microgrids are divided into three
separate time scales. Higher and medium frequency modes are
mainly affected by the filter and the voltage and current controller
parameters. On the other hand, low-frequency modes are affected
by the droop controller, network configuration, cut-off frequency
of power filters and loading conditions [9]. The former modes of
two groups are much damped as compared to later low frequency
group which affects stability margins of a microgrid. The lightly
damped low-frequency oscillations (LFOs) can lead to large power
oscillations in the system making it unstable [10]. Many controllers
have been proposed to damp these oscillations for improving the
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stability margins of a microgrid [11–14]. Studies based on
optimisation of droop controller parameters for improved transient
response are also presented in [15–17]. The literature mentioned so
far make use of state-space small-signal representation based
stability analysis which accurately computes the system
oscillations. However, such type of analysis is very complex
especially for inverter-based DG systems. This is because of the
fact that such systems involve detailed modelling due to the
electrical time constants associated with them. It involves a large
number of differential equations and algebraic equations to be
linearised and solved for calculating different frequency modes
which increases the dimensionality of the model and makes the
process computationally difficult for larger systems. Hence the
process of deciding the stability margin for the inverter-based
systems and obtaining the frequency modes becomes quite
complex.

To solve the aforementioned problem related to a detailed
modelling approach, many authors have come up with model order
reduction (MOR) techniques for simpler analysis such that only
those states which affect the LFO are considered in modelling and
rest others are neglected. In [18–20], authors have presented a
reduced-order model for inverter-based microgrids using singular
perturbation theory. Krons reduction of network-based reduced-
order model is presented in [21, 22] for stability analysis of such
systems. The various MOR techniques have reduced the order of
system state matrix, however, reducing states still require further
computations like calculation and inversion of state matrix.
Moreover, these techniques give results with lesser accuracy [23].

In microgrids which are converter dominated, network
dynamics also play a vital role in the low-frequency dynamics as
the power output of each inverter is actually dependent on the
network dynamics and hence, it is essential to include network
dynamics in such studies [23]. In [23], keeping in view the
importance of network dynamics, a concept of the dynamic phasor
is applied to predict the stability margin of two droop controlled
inverters. The dynamic phasor approach proposed in [23] is much
simpler than MOR techniques and also, it is fair enough in
predicting the stability margin. However, the model is not
generalised enough to be applied on any larger systems having
multiple inverters and loads at different connection points in a
microgrid. The model proposed in [23], computes the stability of
the system when two inverters are connected to a common bus.
The dynamics of the inverters are presented with reference to the
common bus but the model is not extended to study the dynamics
of the inverters with each other for a system having multiple
inverters connected at different buses. In view of the above, the
following points can be concluded as the limitations of the existing
modelling methods.

• The development of the small-signal model of a complete
microgrid is a complex mathematical process and the complexity
increases with increase in the number of inverters, lines, and loads.
Due to the fast nature of static sources, the network needs to be
considered as well in the small-signal study. This leads to the
requirement of linearisation of a large number of state equations
and the system becomes complex.
• MOR techniques can help in reducing the number of states but
the mathematical complexity is still there. Further, these techniques
give results with lesser accuracy [23].
• Although [23] presents a simple yet accurate method to include
the dynamics of the network in a simplified model, the dynamic
phasor based method presented in [23] studies only the interaction
of the sources with a reference bus. However, the power
oscillations in a droop controlled microgrid are seen among the
sources where one source oscillates with respect to others. This is
not studied in [23]. It is shown further in this paper that observing
the dynamics with reference to a fixed bus may give inaccurate
results if the bus magnitude and angle are not maintained constant.
The authors' believe that the philosophy may work in grid-
connected systems as the grid maintains the bus voltage magnitude
and angle, but the same may not give accurate results in
autonomous systems.

• Further, in [23] the sources are assumed to be connected to a
common bus whose voltage is assumed as the reference. As
discussed previously, the same may give erroneous results.
Moreover, in a practical system, all sources may not be connected
to a common bus and therefore, LFO for any general microgrid
may not be studied by this method alone.
• In [23], the power sharing at the instant of load perturbation is not
discussed. In what proportion the load power is supplied by each
source at the instant of load perturbation impacts the system
dynamics. The same is missing in [23]. To the best of authors'
understanding, there is not enough literature that presents how
power is shared among multiple sources at the instant of load
perturbation followed by the dynamics that make the power equal
or that make the system stable/unstable as per the droop
coefficient.
• Reference [23] also does not consider a transfer function to
account for the delay in the measurement of quantities and
achieving the desired control. It is shown further in this paper that
this transfer function plays a critical role in modelling the system
dynamics with the dynamic phasor model.

1.1 Contribution

Keeping the above-mentioned challenges in view, the contribution
of the present work is to develop a new model to study the LFO in
an inverter-based microgrid which addresses the following
objectives:

• To develop a model which is simple in implementation, and
mathematical complexity needed to develop the same is reduced.
• To develop a model which enables the study of both initial power
outputs of the sources and the steady-state results and also, enables
both time-domain and frequency-domain studies as the proposed
model is a linearised model.
• To develop a model which can study the interaction among all the
sources in the microgrid and at the same time, which is generalised
and which can be easily be extended if the number of sources
change.

Bridging the gaps of model developed in [23] and to meet the
objectives mentioned above, authors have proposed a transfer
function based closed loop simplified model to study the LFO.
Concept of dynamic phasors can be extended to obtain the dynamic
power flows through various lines in the network with load
perturbations at different connection points. Thus, interaction
among various inverters through connecting lines can be obtained
based on these dynamic power flows. The proposed model is not
based upon any MOR techniques, rather this method directly
develops a simplified model which only takes into consideration
the system dynamics which are responsible for LFO and thus
making it simpler as compared to other methods developed in
literature so far. The proposed model is inspired by the well-known
automatic generation control (AGC)/automatic load frequency
control model in which change in tie-line power flow is obtained
based on the difference in angles of the buses as a result of the
frequency difference in the two areas to which the tie-line is
connected. The change in tie-line power flow adds to the source in
one area while it adds to the load in the other area [24, 25]. This
concept is used to calculate the power flow between two inverter-
based sources and then the change in power flow adds as a load to
one inverter while it adds as a source (negative load) to the other
inverter.

1.2 Organisation

The rest of the paper is organised as follows. Section 2 contains
test microgrid description and its control architecture used for
simulation. The small signal and sensitivity analysis based on
conventional approach is presented in Section 3. Section 4 presents
step by step procedure to develop the proposed simplified small
signal model for stability analysis. Time domain and frequency
domain results are presented in Section 5 followed by conclusion
of the paper in Section 6.
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2 Test system structure and mathematical
modelling
The simulated microgrid is a 220 V per phase RMS, 50 Hz three
phase system as shown in Fig. 1a. The test system parameters are
given in Table 1. It consists of three inverter-based DGs which are
working in parallel to maintain frequency and bus voltages in the
system. The frequency and voltage droop based primary control is
used for firing inverters which supply two passive loads connected
at bus 1 and 3. The overall control philosophy for autonomous
inverters used for simulation is same as given in [10]. The
complete block diagram of inverter control is shown in Fig. 1b. To
avoid redundancy, only relevant equations and schematic are
shown and complete control structure can be found in [10].

The instantaneous power at the output of the inverter is
calculated and then passed through a low pass filter to extract the
fundamental component. The resultant power is now given to the
droop controller for obtaining reference frequency and voltage for
an individual inverter as shown in Fig. 1c. The governing equations
are given as:

ω = ωn − mp ∗ Pfun

vTd
∗ = Vn − nq ∗ Qfun

(1)

where ω and vTd
∗  are the new reference frequency and voltage,

respectively, after introducing droop into the nominal quantities ωn

and Vn. The voltage reference for q-axis is assumed to be zero so
that output voltage magnitude would be aligned with d-axis of the
inverter reference frame [4, 5]. Active and reactive power droop
coefficients are represented by mp and nq, respectively, which are
defined as the change in frequency and voltages per unit rated
power of the DG. Pfun and Qfun are fundamental power obtained
from a low pass filter as given by:

Pfun =
ωc

s + ωc
∗ (Pins)

Qfun =
ωc

s + ωc
∗ (Qins)

(2)

The instantaneous power used in the above relation (Pins and Qins)
can be calculated using the sensed value of voltage and current at
the output of the inverter terminal as shown in Fig. 1c. The
references generated by the droop controller is given to voltage
controller for maintaining bus voltages followed by current control
loop which limits the input current to the switches. The voltage and
current controllers are standard proportional-integral (PI)
regulators. Equations related to these control loops are defined as:

iLd
∗ = FiLd − ωCfvTq + Gv(s)(vTd

∗ − vTd) (3)

iLq
∗ = FiLq + ωCfvTd + Gv(s)(vTq

∗ − vTq) (4)

vid
∗ = − ωLfiLq + Gi(s)(iLd

∗ − iLd) (5)

viq
∗ = ωLfiLd + Gi(s)(iLq

∗ − iLq) (6)

where vT is the capacitor terminal voltage of inverter, iL is the
inverter output current, F is the feed forward term, and Gv(s) and
Gi(s) are the transfer function of standard PI regulator given as:

Gv(s) = Kpv + Kiv/s; Gi(s) = Kpc + Kic/s (7)

Neglecting switching dynamics, inverter output voltage (vidq) is
assumed to be equal to its reference value (vidq

∗ ). The current and
voltage dynamics of LCL filter in local reference frame at the
inverter terminals are defined as:

vid − vTd = (Rf + sLf)iLd − ωLfiLq (8)

viq − vTq = (Rf + sLf)iLq + ωLfiLd (9)

iLd − iTd = sCfvTd − ωCfvTq (10)

iLq − iTq = sCfvTq + ωCfvTd (11)

Fig. 1  Test microgrid with inverter controls
(a) Test system under study, (b) Block diagram of inverter control, (c) Droop
controller

 

Table 1 Test system parameters
Parameter Notation Value
resistance of output filter Rf 0.1 Ω
inductance of output filter Lf 1.35 mH
capacitance of output filter Cf 50 μF
resistance of coupling branch Rc 0.03 Ω
inductance of coupling branch Lc 0.35 mH
impedance of line 1 ZLine12 0.23 + 0.1j Ω
impedance of line 2 ZLine23 0.35 + 0.58j Ω
voltage controller proportional gain Kpv 0.1682
voltage controller integral gain Kiv 189.345
current controller proportional gain Kpc 13.5716
current controller integral gain Kic 1005.310
cut-off frequency of low pass filter ωc 31.41 rad/s
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siTdqi = ( − Rc/Lc)iTdqi ± ωiTdqi + (1/Lc)(vTdqi − vbdqi) (12)

Connecting lines and passive loads are modelled as series RL
branches. The dynamical equations for the same are described on a
network reference frame as given in (13) in (14), respectively

siLineDQi = ( − RLine/LLine)iLineDQi ± ωiLineDQi

+(1/LLine)(vbDQ j − vbDQk)
(13)

siLoadDQi = ( − RLoad/LLoad)iLoadDQi ± ωiLoadDQi

+(1/LLoad)vbDQi

(14)

The complete microgrid is described by the mathematical model
given from (1) to (14) and this model will be used for detailed
small signal analysis discussed subsequently.

3 Detailed small signal state space analysis
approach
The conventional state space analysis is based on the Taylor series
expansion of non-linear differential equations to form a linearised
set of equations. For a linear time-invariant system with p inputs, q
outputs and n state variables, the state-space representation is given
in (15):

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(15)

where x(t) is the state vector, y(t) is the output vector, u(t) is the
input/control vector, A is the state/system matrix of the order n × n,
B is the input matrix of the order n × p, C is the output matrix of
the order q × n and D is the feedforward matrix of the order q × p

For developing the system state matrix, first, state space model
of multiple inverters, lines and loads are obtained. Then state space
model of individual components are combined on a common
reference frame. Any frame can be selected as a common reference
frame and all other frames are converted to the reference frame by
using (17) where, the angle δ which is required for transformation
can be obtained using (16). δi describes the angle between common
reference frame and individual reference frame for the ith inverter.

δ = ∫ ω − ωref dt (16)

f DQ = Ti f dq (17)

where f dq represents the states in individual reference frame, f DQ is
the representation of the same on the common reference frame and
Ti is the transformation matrix given by (18)

Ti =
cos(δi) −sin(δi)

sin(δi) cos(δi)
(18)

In this paper, the inverter 1 frequency is selected as the common
frame. To obtain the state-space model of the complete microgrid,
(1)–(14) are linearised around an operating point and combined on
a common frame to get the complete state matrix as given in (19).

ΔẋMG = AMG ∗ ΔxMG (19)

The state variables given in (19) are

ΔxMG = [Δxinv, ΔxLine, ΔxLoad]
T

where

Δxinv = {ΔPfun, ΔQfun, Δδ, Δϕdq, Δψdq,

ΔvTdq, ΔiLdq, ΔiTdq}

ΔxLine = {ΔILinedq}

ΔxLoad = {ΔILoaddq}

Each inverter will have states corresponding to power control
(ΔPfun, ΔQfun, Δδ), voltage control (Δϕdq), current control (Δψdq)
and filter parameters (ΔvTdq, ΔiTdq). As discussed previously, the
network (ΔILinedq) and load (ΔILoaddq) dynamics also play a part in
the overall system studies. Therefore, as the number of sources/
lines/loads increase in the system, the number of states also
increase. For each new droop controlled inverter, there are 13 new
states. Thus, it becomes a very computational analysis as the
number of inverter increases.

The overall system state matrix (AMG) is a 47 × 47 matrix
which is represented in the form of various symbols and sub-
matrices. The complete matrix is not presented in this paper due to
space constraints and it can be seen in [4].

3.1 Eigen value analysis

By using system state matrix (AMG), eigen values of the system are
obtained and their spectrum is shown in Fig. 2. There are three sets
of modes: high-frequency, medium-frequency and low-frequency
modes. Out of the three, damping of high and medium frequency
modes is sufficient to keep the system stable. However, damping of
some low-frequency modes is not sufficient and hence they are
responsible for making system unstable at different operating
conditions. These critical low-frequency modes are shown in Table
2. It can be seen in Table 2 that the critical oscillatory mode is
close to 8 Hz. The frequency of oscillation in droop controlled
microgrid is higher as compared to typical LFO range in large
power grid due to the faster electrical dynamics and lesser inertia
of inverter. The LFO in a large power grid could be of various
types ranging from 0.1–2.5 Hz, e.g. local plant mode, intermachine
or interplant mode, interarea mode, control mode etc. [24]. The
LFOs, on the other hand, in a droop controlled microgrid are due to
the lag introduced by the low pass filter delay which causes a
delayed change in frequency of the inverter when its power
changes due to change in load [10]. This leads to the supply of
power from a source which is generating the voltage at a higher
frequency to other nearby sources at a relatively lower frequency.
Thus, the oscillations are seen among the power and frequency of
one source against the other nearby source and effectively all the
sources swing against each other like the interplant mode in large
power systems. In a droop controlled microgrid these oscillations
can range around 5–15 Hz [4–13].

Fig. 2  Eigen value spectrum of microgrid under study
 

Table 2 Critical low-frequency modes at mp = 1.15 ∗ 10−4

Mode Eigen value Damping ratio, %
mode I −0.02 ± 49.27j 0.04
mode II −12.91 ± 29.18j 40
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3.2 Sensitivity analysis

To find the origin of different frequency components, sensitivity
analysis is done on system state matrix to observe the participation
of different states in a particular mode [24]. The sensitivity factor
or participation factor (pni) given in (20) is the measure of relative
participation of state variable in a particular mode which is
calculated using left and right eigen vectors and is equal to
sensitivity of eigen value (λi) to the diagonal element (ann) of the
state matrix.

pni =
∂λi

∂ann
(20)

There are two dominant low-frequency modes which are
significantly affected by the droop controller parameters. The
actual participation factors given in Table 3 show that the mode-I
and mode-II, which are the critical ones (system stability depends
on these modes), are mostly dependent on the states of active
power loop and δ which defines the interconnection of one inverter
to the other.

Hence from the analysis done above, it is found that the low-
frequency modes caused due to parallel operation of droop
controlled inverters are responsible for determining the stability of
such type of microgrid. Other control loops do not participate
significantly in shaping the critical modes of the system. Therefore,
for stability analysis, dynamics of other loops in the inverter
control can be neglected and a more simplified model can be
obtained.

4 Proposed simplified approach for stability
analysis
To reduce computational efforts, a simplified small-signal model is
developed keeping the fact in mind that only the states of power
control loop of the inverter are responsible for low-frequency
modes as discussed in Section 3. The proposed interconnected
multi-inverter small signal model uses the concept of dynamic
phasors as given in [23] to obtain the dynamic power flow through
the lines. Dynamic phasors based model has been developed for
inverter-based systems to include the dynamics of network
elements as well such that the frequency in X = ωL is considered
to be dynamic and not constant.

The active and reactive power through a line connecting bus i
and j is expressed as:

p
~

i, j =
3

R
2 + X

2 (RvTi
2 − RvTivT jcos δi, j + XvTivT jsin δi, j)

q
~

i, j =
3

R
2 + X

2 (XvTi
2 − XvTivT jcos δi, j − RvTivT jsin δi, j)

(21)

where δi, j=δi − δj is the difference in voltage angle of bus i and j.
vTi and vT j are the magnitude of capacitor terminal voltage of
inverter i and inverter j, respectively.

A complex time domain waveform x(t) can be represented
inside the interval τ ∈ ( t − T , t]  by the following Fourier series
[23, 26]:

x(τ) = ∑
k = − ∞

∞

Xk(t)e
jkωsτ (22)

where ωs = 2π /T  and Xk(t) is the Fourier coefficient (time-varying
kth phasor at time t) which can be expressed as:

Xk(t) =
1
T ∫

t − T

t

x(τ)e− jkωsτdτ = ⟨x⟩k(t) (23)

where ⟨x⟩k(t) is the average kth phase over the period T.
The derivative of the kth dynamic phasor can be written as:

dXk(t)
dt

=
dx

dt k
(t) − jkωsXk(t) (24)

Based on (24), the current through an inductor can be related to
the voltage across it as:

vL = L
diL
dt

+ jωLiL (25)

If the derivative in above equation is denoted by the Laplace
variable, the real and imaginary part of the impedance of a line
containing resistance and inductance is given by Ls + R and ωL,
respectively. Using this concept of dynamic phasors, we now have
a linear but dynamic model of power flow through a line in which
(21) is transformed to:

p
~

i, j = 3
Ls + R

(Ls + R)2 + (ωL)2 (vTi
2 − vTivT jcos δi, j)

+3
ωL

(Ls + R)2 + (ωL)2 vTivT jsin δi, j

q
~

i, j = −3
Ls + R

(Ls + R)2 + (ωL)2 vTivT jsin δi, j

+3
ωL

(Ls + R)2 + (ωL)2 (vTi
2 − vTivT jcos δi, j)

(26)

The linearised equations can be obtained for small disturbances
around an operating point as given in:

Δp
~

i, j = SpvΔvTi, j + SpdΔδi, j = f (ΔvTi, j, Δδi, j)

Δq
~

i, j = SqvΔvTi, j + SqdΔδi, j = g(ΔvTi, j, Δδi, j)
(27)

Equation (27) can be used to calculate dynamic power flow
through a line between the buses i and j having change in bus
voltage magnitude and angle as ΔvTi, j (vTi, j = vTi − vT j) and Δδi, j,
respectively, where

Spv =
3(Ls + R)vTi

0

(Ls + R)2 + (ωL)2 ,

Sqv =
3ωLvTi

0

(Ls + R)2 + (ωL)2 ,

Spd =
3ωL(vTi

0 )2

(Ls + R)2 + (ωL)2

Sqd =
−3(Ls + R)(vTi

0 )2

(Ls + R)2 + (ωL)2

For calculating the dynamic phasor coefficients (Spd, Sqd, Spv

and Sqv), the net inductance and resistance between ith and jth
capacitor voltage are used. Due to the very small reactive power
droop coefficient (nq), the bus voltages are approximately same i.e
vT1 ≃ vT2 ≃ vT3 for small change in reactive power. Hence, vTi

2  can
also be written as vTivT j and vice versa.

4.1 Procedure to develop proposed small signal model

The proposed approach is a generalised one and it can be applied
on any size of radial microgrids having passive loads. For the
development of the interconnected small-signal model, inverter 1 is
considered as the reference frame. The small-signal power flow-
based model is obtained for stability analysis which is simpler as
that of the model described in Section 3. The step by step

Table 3 Participation factors of critical low-frequency
modes
Mode 1 Mode 2
States Participation States Participation
P1 0.21 P1 0.14
Q1 0.04 Q1 0.02
P2 0.29 P3 0.38
Q2 0.04 Q3 0.03
δ2 0.56 δ3 0.66
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procedure for developing the simplified model is described as
follows:

(1) The first step is to initialise each inverter power equal to the
amount of load power supplied by that particular inverter bus. As
soon as a load is switched ON, the load will extract its current from
the shortest impedance path. Therefore, each load just after
switching ON will be supplied by different sources in a proportion
depending on the net impedance between the inverter and the load.
The source which is electrically far from the load will give very
small power as compared to the source which is electrically close
to the load. For example, in the system shown in Fig. 1a, load 1 is
connected at the terminal of bus no. 1. Therefore, as soon as this
load is switched ON, it will extract maximum power from inverter
1, some power from inverter 2, and a minimum power (close to
zero) from inverter 3. The initial power of each inverter can be
obtained by:

ΔPinii = ΔPLi (28)

ΔQinii = ΔQLi (29)

where i = index of inverter, ΔPinii is the initial power output of the
inverter, and ΔPLi is the resultant initial load power shared by the
ith inverter. Similarly, the initial reactive power supplied by each
source (ΔQinii) is also initialised.

Initialisation process:When a load change occurs, as the
voltage at each filter capacitor is same, the power demand by the
load is supplied by all the sources but in different ratios depending
on the electrical distance between the bus where load is connected
and the capacitor node of the bus. If the impedance of the coupling
inductance and resistance for ith inverter is given by Zi and the
impedance of the line connecting bus i and bus j is given by Zi j

then the relationships given in the Table 4 define the initial power
of each source depending on its electrical distance from the node
where the load is connected. The various equivalent impedances
Zeqi in Table 4 are given in (30).

Zeq1 = Z12 + [Z2 ∥ (Z23 + Z3)]
Zeq2 = Z23 + Z3

Zeq3 = Z12 + Z1

Zeq4 = Z2 ∥ (Z23 + Z3)
Zeq5 = Z23 + [Z2 ∥ (Z12 + Z1)]
Zeq6 = Z12 + Z1

(30)

From Table 4, it can be seen that the initial contribution to the
load is negligible for the sources which are electrically far and

most of the power is met by the nearest source. This result can
prove useful when there are a large number of sources. It can be
assumed that the initial contribution for inverters which are far
from the load becomes quite close to zero, e.g. PL3

1. Therefore,
when the microgrid is large, for most of the inverters the initial
contribution to a few loads will be very small which can be
approximated to zero. Thus, it is not needed to calculate the initial
contribution from each source. Only the contribution from the
sources which are electrically closer needs to be computed.
Therefore, this approach does not add much complexity even if the
size of the system increases.

Whenever the loads are turned ON, the initial power of each
source is calculated as described above and assigned to each
inverter. For example, if all the loads (PLoad1, PLoad2 and PLoad3) are
turned ON simultaneously, then the net initial power of the each
source is given by:

ΔPinii = ΔPLi = PLi
1 + PLi

2 + PLi
3 (31)

Similar expression is used in the case of reactive power and is not
written again just to avoid redundancy.

(2) The next step is to find out the change in bus angle and bus
voltage for all the inverter buses as per the active and reactive
power droop introduced by the power controller. The input to the
controller is the change in the instantaneous active and reactive
power of the inverter and the output is the change in power angle
and capacitor voltage of each inverter (Δδi and ΔvTi). The
corresponding relation is given as:

Δωi = − mp ∗ (ΔPfuni) = − mp ∗ {
ωc

s + ωc
∗ (ΔPcali)}

Δδi = ∫ ωidt

ΔvTi = − nq ∗ (ΔQfuni) = − nq ∗ {
ωc

s + ωc
∗ (ΔQcali)}

(32)

where

ΔPcali =
1

1 + sτ
∗ ΔPinsi (33)

The instantaneous power (ΔPinsi) given above is the sum of initial
power (discussed in step 1) and the dynamic power flow
(calculation of which will be shown in further steps). Initially,
when the dynamic power flow is zero, the instantaneous power
becomes same as the initialised power.

Table 4 Initial sharing of load powers
Load connected at bus Inverter number Expression for initial power Numerical value
1 (PLoad1) 1 PL1

1 = PLoad1 × mag(
Zeq1

Z1 + Zeq1
) PL1

1 = PLoad1 × 0.729

1 (PLoad1) 2
PL2

1 = PLoad1 × mag(

Z1
Z1 + Zeq1

× Zeq2

Z2 + Zeq2
)

PL2
1 = PLoad1 × 0.233

1 (PLoad1) 3
PL3

1 = PLoad1 × mag(

Z1
Z1 + Zeq1

× Z2

Z2 + Zeq2
)

PL3
1 = PLoad1 × 0.033

2 (PLoad2) 1 PL1
2 = PLoad2 × mag(

Zeq4
Zeq3 + Zeq4

) PL1
2 = PLoad2 × 0.233

2 (PLoad2) 2
PL2

2 = PLoad2 × mag(

Zeq3
Zeq3 + Zeq4

× Zeq2

Z2 + Zeq2
)

PL2
2 = PLoad2 × 0.697

2 (PLoad2) 3
PL3

2 = PLoad2 × mag(

Zeq3
Zeq3 + Zeq4

× Z2

Z2 + Zeq2
)

PL3
2 = PLoad2 × 0.1

3 (PLoad3) 1
PL1

3 = PLoad3 × mag(

Z3
Z3 + Zeq5

× Z2

Z2 + Zeq6
)

PL1
3 = PLoad3 × 0.033

3 (PLoad3) 2
PL2

3 = PLoad3 × mag(

Z3
Z3 + Zeq5

× Zeq6

Z2 + Zeq6
)

PL2
3 = PLoad3 × 0.1

3 (PLoad3) 3 PL3
3 = PLoad3 × mag(

Zeq5
Z3 + Zeq5

) PL3
3 = PLoad3 × 0.873
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A first-order transfer function, given in (33) is introduced in this
path to account for the delay in the measurement of quantities and
achieving the desired control. The time constant (τ) of this transfer
function can be taken roughly close to half electrical cycles. For
better accuracy this delay can be represented by e−sτ or its Padé
approximation of appropriate order [27, 28].

(3) Third step is to find out the dynamic phasor coefficients
using the inductance and resistance between the capacitor terminal
voltage of inverters depending upon the initial operating voltages
using the relation given in (27).

(4) Once the coefficients are known, the power flows between
any set of inverters can be calculated using (7) as given in the
following relations:

Δp
~

n, n − 1 = f (ΔvTn, n − 1, Δδn, n − 1)

Δp
~

n − 1, n − 2 = f (ΔvTn − 1, n − 2, Δδn − 1, n − 2)

Δp
~

n − 2, n − 3 = f (ΔvTn − 2, n − 3, Δδn − 2, n − 3)

⋮

Δp
~

2, 1 = f (ΔvT2, 1, Δδ2, 1)

(34)

where n = index of inverter. For example, for the system presented
in this paper, there are three buses and two lines. So, the line flow
equations are:

Δp
~

3, 2 = f (ΔvT3, 2, Δδ3, 2)

Δp
~

2, 1 = f (ΔvT2, 1, Δδ2, 1)
(35)

In (34) and (35), the active power flow relations are given. Same
process is to be followed for reactive power calculations as well. It
is to be noted that in these equations it is assumed that power is
flowing from higher numbered source to lower numbered source. If
the power is actually flowing in the reverse direction, the dynamic
power calculated above will appear negative.

Once the change in power flows are obtained, the change is
power generated by each inverter can be calculated. If power is
going out of the inverter bus, it signifies an increase in inverter
power output while if power is coming into the inverter bus, it
signifies a decrease in inverter output power. Thus, change in
dynamic power generated by each inverter will be equal to the
resultant change in power coming in or going out at the inverter
bus. Mathematically, it can be presented as:

ΔP
~

i = ∑Δp
~

i, j − ∑Δp
~

k, i (36)

where Δp
~

i, j represents the dynamic power flowing out of the bus i
and Δp

~
k, i represents the dynamic power flowing in to the bus i.

(5) The last step is to add the change in inverter power to the
initial power to obtain the inverter instantaneous power (of each
inverter) which is then given to the droop controller (step 2).

ΔPinsi = ΔPinii + ΔP
~

i (37)

Thus, for the three inverter system considered in this work, the
instantaneous power of each inverter can be written as follows:

ΔPins3 = ΔPini3 + ΔP
~

3

ΔPins2 = ΔPini2 + ΔP
~

2

ΔPins1 = ΔPini1 + ΔP
~

1

(38)

where

ΔP
~

3 = Δp
~

3, 2

ΔP
~

2 = Δp
~

2, 1 − Δp
~

3, 2

ΔP
~

1 = − Δp
~

2, 1

(39)

Reactive power generated by each inverter is calculated in the
same way as the active power (discussed above) using the function
g(ΔvTi, j, Δδi, j). The corresponding equations are similar to the
active power equations and are not shown here to avoid
redundancy. It is to be noted that line losses are neglected in this
approach. The complete procedure for obtaining the time response
from the simulation of the simplified small-signal model is also
summarised in Fig. 3. 

5 Results and discussions
To verify the procedure discussed above, detailed time-domain
simulations and eigenvalue analysis for different test cases are
presented and compared with the proposed model. The proposed
model shows how power is shared equally at equal droop
coefficients as well as it also able to find out the stability margin of
the microgrid without detailed state-space modelling.

5.1 Time domain simulation

5.1.1 When every bus is an inverter bus (three inverter
system): A simplified model for three inverter microgrid shown in
Fig. 1a is developed and it is shown in Fig. 4. There are two loads
connected at buses 1 and 3. Hence, the initial power of inverter 1, 2
and 3 is calculated as per their impedance ratio to the load as
described in Section 4. The inverter 1 is taken as the reference
inverter, therefore, the line flows from other inverters to the
reference one are calculated as given in (39). The active power,
inverter frequency, reactive power and d-axis inverter voltage of

Fig. 3  Flowchart representing step by step simulation procedure with the
proposed method
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inverter 2 obtained with detailed time-domain simulation using
MATLAB/Simulink and with the proposed small-signal model are
shown in Fig. 5. The results show that the proposed model is
closely matching with the detailed time-domain simulation with
different load perturbations at 1.5 and 2.5 sec. Results of other
inverters are not shown to avoid redundancy.

The iterative loop shown in Fig. 3, gives the power of each
inverter till the loop is running (up to simulation time). In each
step, the power of the inverters are updated and this way the

proposed model also gives the result of power-sharing among the
inverters which is normally obtained by simulation of the actual
system which is complex and time consuming as the actual system
is a non-linear one. As seen in Fig. 5, the simulation results
obtained by the proposed method match satisfactorily with the
actual simulation. Based on this, the power sharing and frequency
deviation among all three inverters can be seen with the help of the
proposed model as shown in Fig. 6. The proposed model accurately
converges to a steady-state power-sharing between all three

Fig. 4  Proposed simplified transfer function model
 

Fig. 5  Simulation results of detailed and proposed small signal model for three inverter microgrid
(a) Active power of inverter 2, (b) Frequency deviation of inverter 2, (c) Reactive power of inverter 2, (d) Voltage magnitude of inverter 2
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inverters and hence, it can be used for power-sharing studies in
place of detailed non-linear time-domain simulation.

The results shown in Fig. 5 are obtained by simulating the
system for a duration of 4 s in MATLAB/Simulink at 50 μs time
step in a Windows 10 Computer with 2.60 GHz processors. The
time taken to run the detailed simulation was 9 min and 4 s while
the time taken to run the proposed small-signal model in the same
computer was only 7 s. This shows the advantage of the proposed
model in terms of computational efficiency.

5.1.2 Effect of τ: It is shown in [27, 28] that time delay of the
digital control must be taken into account when modelling the
dynamics of the power control loop. This delay is actually
represented by the transfer function e−sT where T is the time period
of the grid frequency. It is shown in [27, 28] that if e−sT is replaced
by the first-order Padé approximation, then the transfer function
that relates the instantaneous power to the average power can be
approximately given by (1)/(1 + (T /2)s). Therefore, in this work,
we have taken the time constant roughly close to the half-cycle
time period. However, this might introduce some error and the time
constant may need to be tuned to get more accurate results.
Therefore, the time constant τ may need to be computed
analytically. The exact method to analytically compute this
parameter will be taken as a future study by the authors.

In order to observe the effect of τ, the droop coefficient, mp is
kept at the critical value obtained with τ = 0.01 (half of the

electrical time period) while the parameter τ is changed. Results
are compared at three different values of τ. It is observed that more
stable response is observed for lower values of τ as shown in Fig.
7. 

As more stable results are seen at lower τ values, the critical
droop values obtained are also different for different τ values as
shown in Table 5. Although the variation of critical droop is in a
range close to the actual critical droop, however, these results show
that the accuracy of the model may depend on the selection of τ. As
discussed earlier, in this work τ is taken close to half-cycle time
period but the exact method of calculating this parameter needs
further investigation and it will be taken by authors in their future
research.

5.1.3 When one bus is not an inverter bus (two inverter
system): The proposed model is also tested for a case when a non-
inverter bus is present in a system. For this, inverter 2 of Fig. 1a is
removed resulting in a two inverter system with three buses. Now
the bus number 2 becomes a non-inverter bus. The proposed small-
signal model of such a system can be easily obtained using the
procedure given in Section 4. The only difference is that, now the
two lines indicated by ZLine12 and ZLine23 in Fig. 1a are now added to
make a single line which is used to calculate the dynamic power
flows. Fig. 8 shows the comparison results for this system with
detailed simulation and with proposed simulation. In this case,
also, results are only shown for one inverter to avoid redundancy.
The results clearly show a good match with the detailed simulation.

5.1.4 Comparison with existing model: To show the comparison
with existing methods, the proposed model is compared with the
model presented in [23]. This is because both the models (the
proposed model and the method presented in [23]) are based on
dynamic phasor approach and both models provide a simple yet
accurate model of the microgrid without involving complex
mathematical tools. Rather [23] forms the basis of the proposed
model and the improvements observed in the result as compared to
[23] will help readers understand the significance of the proposed
work.

Further, to make the comparison with [23], the 2 inverter
system in Section 5.1.3 is considered with a load at the bus where
the two lines meet. This is done to make the system similar to the
one presented in [23] where both the sources are connected to a
common bus through lines and load is connected to the same bus.

Effect of dynamics of sources against each other: The key
difference in the model presented in [23] is that for each source its
own voltage angle and magnitude are used to calculate active and
reactive power by assuming the bus voltage magnitude and angle
to be constant. On the contrary, the proposed model studies the
oscillations among the various sources by using the difference of
voltage magnitude and angle of the sources. This is a major
improvement that the proposed model presents in comparison to
the existing works. This comparison is shown in Fig. 9. It can be
seen in the results that the proposed model accurately tracks the
exact simulation results while there are significant oscillations if
the system is modelled as per [23].

Effect of exclusion of transfer function: To show this
comparison, the transfer function ((1)/(1 + sτ)) is removed from
the proposed model (similar to [23]) while other aspects of the
model are kept constant. The response of the system with the
proposed model and the proposed model without the transfer
function (similar to [23]) are compared with the detailed time-
domain simulation of the actual system at a random droop
coefficient and the results are presented in the Fig. 10. It can be
seen from the results that if the transfer function is not considered,

Fig. 6  Simulation results for three inverter system with proposed model
(a) Active power sharing of three inverters, (b) Frequency deviation of three inverters

 

Fig. 7  Effect of τ on inverter 1 power
 

Table 5 Effect of τ on critical droop
τ Critical mp

0.011 1.4 × 10−4

0.010 1.48 × 10−4

0.009 1.61 × 10−4
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more stable results are seen. This is in line with the above results
that reduction of τ results in a more stable response. This leads to
significant error in the critical droop value as compared to the
proposed model as shown in Table 6. 

Combined effect: It is seen from the above results that the
method presented in [23] gives two drawbacks. First, more
oscillations are seen if the modelling used in [23] is used. On the
contrary, in the second case, due to exclusion of the delayed
transfer function more stable results are seen. The two effects are
opposite to each other and the combined effect of the two is also
compared with the proposed model by using both the two together,
i.e. considering exclusion of the delay transfer function and
considering the dynamics of the sources against a fixed bus
together to make the model resemble the model proposed in [23].
The results are shown in Fig. 11. The results clearly show that the
stabilising effect of exclusion of delay transfer function helps in
reducing the oscillations in the system but the overall response still
shows larger oscillations in comparison to the actual response
while the proposed model gives more or less accurate results.

5.2 Eigen value analysis of proposed model

Eigenvalue analysis for the two cases described in the previous
section is carried out using linear analysis toolbox of MATLAB to
compare the stability limits and frequency modes of detailed small
signal model and proposed small signal model.

5.2.1 When every bus is an inverter bus: For the three inverter
microgrid system of Fig. 1a, eigenvalues are calculated. It is shown
that there are two critical low-frequency modes in the system as
tabulated in Table 2 as per the detailed small signal modelling. The
eigenvalues obtained from the proposed model also show the
critical low-frequency modes. Fig. 12 shows the trace of both
modes on varying mp and nq. When mp is increased up to a certain
value at fixed nq, the system becomes unstable due to the shifting
of the mode-1 from left half to the right half of the s-plane as
shown in Fig. 12a. Mode-2 also shifts towards the right (Fig. 12a),
but due to the higher damping than mode-1, its movement is
slower. Similarly, shifting of both the modes with varying nq is also
shown in Fig. 12b. Based on these traces, it can be concluded that
there exists a critical droop value (mp) for which the system is
marginally stable. The comparison of the critical droop and the
corresponding eigenvalue using both the model of Sections 3 and 4
are tabulated in Table 7. From the results shown in Table 7, it is
found that the proposed model identifies the two critical modes as
well as the system stability limit with acceptable accuracy. Hence,
the proposed model is also able to predict the low-frequency modes

Fig. 8  Simulation results of detailed and proposed small signal model as per system in Section 5.1.3
(a) Active power of inverter 1, (b) Frequency deviation of inverter 1, (c) Reactive power of inverter 1, (d) Voltage magnitude of inverter 1

 

Fig. 9  Effect of modelling process on inverter 1 power
 

Fig. 10  Effect of exclusion of τ on inverter 1 power
 

Table 6 Effect of considering delay transfer function on
critical droop
Model Critical mp

detailed time domain simulation 6.3 × 10−4

proposed 7.1 × 10−4

without τ 14.9 × 10−4

 

Fig. 11  Comparison of inverter 1 power with different methods
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and their sensitivity to droop parameters accurately for stability
analysis. Without going into detailed computational modelling, the
proposed model effectively calculates the results with very less
computation.

5.2.2 When one bus is not an inverter bus: Eigenvalue analysis
is also carried out for two inverter system using the detailed and
proposed small-signal method. The trace of critical low-frequency
mode for this system is shown in Fig. 13 and the comparison of
critical droop value is also shown in Table 8. It is found that the
proposed model also works well in identifying stability limit and
frequency modes for this system making the proposed model more
generic and simple for different configuration of microgrids.

From the simulation and eigen-value results, it is concluded that
the proposed model not only predicts the system stability but also
gives acceptable transient response in the time domain. Therefore,
the proposed model can be used to simulate larger radial
microgrids with passive loads by using linear transfer functions
only.

5.3 Discussion

The approach presented in this paper has been implemented for
two configurations of the microgrid. However, the method can be
easily applied in any other configuration of droop controlled
inverter-based microgrid using the three simple steps:

• Initialise the powers
• Calculate the dynamic power coefficients
• Appropriately add/subtract the power flowing from one source to
the another. For a new source, it will only affect its neighbouring
source while the rest will not change. Hence, the approach is easily
scalable.

6 Conclusion
This paper presents a simplified small signal stability analysis
approach based on dynamic power flow for inverter-based isolated
microgrids. Conventionally small-signal state space analysis is
used to calculate the low-frequency modes of the system. However,
the process is very complex and involves large computations for
larger systems. Therefore, for stability studies, this work proposes a
step by step procedure for developing an AGC-based simplified
model to calculate the stability margin and the various low-
frequency modes present in isolated microgrids. Dynamic phasor
based representation of the network is used to calculate the line

power flows which follow network dynamics. Other than the
network, dynamics of droop controller of the inverter is considered
for analysis. The process is much easier as compared to the
conventional modelling and it can work effectively as verified by
the time domain simulation results as well as by eigenvalue
analysis. The added advantage obtained with this model is that it
not only provides a simplified system for study but is also provides
the flexibility of doing time-domain simulations as well as s-
domain analysis with the same system as it is a linear transfer
function-based model. Therefore, the proposed modelling
algorithm can be used for easier stability analysis of the larger
systems having a large number of inverters with distributed passive
loads. The accuracy of the model depends on the selection of the
time constant τ. Although the value close to half electrical cycle is
sufficiently accurate for inverter-based systems, the exact method
of selection of the time constant will be taken by the authors as a
future work.
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Fig. 12  Eigen value trace of dominant low-frequency modes for three
inverter system
(a) Trace of mode I and mode II mp is increased at nq = 1.3 × 10−5, (b) Trace of mode

I and mode II system nq is increased at mp = 9 × 10−5

 

Table 7 Stability limit and frequency modes for three
inverter system
Type of model Critical

stability limit
(mp)

Critical low-frequency
modes

detailed small
signal [4]

1.15 × 10−4 mode I= −0.02 ± 49.27j; mode
II= −12.91 ± 29.18j

proposed small
signal

1.48 × 10−4 mode I= −0.29 ± 46.52j; mode
II= −10.31 ± 26.43j

 

Fig. 13  Eigen value trace of dominant low-frequency modes for two
inverter system
(a) Trace of mode I when mp is increased at nq = 1.3 × 10−5, (b) Trace of mode I when

nq is increased at mp = 9 × 10−5

 
Table 8 Stability limit and frequency modes for two inverter
system
Type of model Critical stability

limit (mp)
Critical low-frequency

modes
detailed small signal
[4]

6.3 × 10−4 mode I= −0.06 ± 68.98j

proposed small signal 7.1 × 10−4 mode I= −0.15 ± 65.2j
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